Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Glob Chang Biol ; 29(12): 3318-3330, 2023 06.
Article in English | MEDLINE | ID: mdl-37020174

ABSTRACT

Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.


Subject(s)
Anthozoa , Seaweed , Animals , Humans , Coral Reefs , Ecosystem , Seaweed/physiology , Anthozoa/physiology , Pacific Ocean
2.
Glob Chang Biol ; 26(8): 4302-4315, 2020 08.
Article in English | MEDLINE | ID: mdl-32459881

ABSTRACT

Tropical cyclones generate extreme waves that can damage coral reef communities. Recovery typically requires up to a decade, driving the trajectory of coral community structure. Coral reefs have evolved over millennia with cyclones. Increasingly, however, processes of recovery are interrupted and compromised by additional pressures (thermal stress, pollution, diseases, predators). Understanding how cyclones interact with other pressures to threaten coral reefs underpins spatial prioritization of conservation and management interventions. Models that simulate coral responses to cumulative pressures often assume that the worst cyclone wave damage occurs within ~100 km of the track. However, we show major coral loss at exposed sites up to 800 km from a cyclone that was both strong (high sustained wind speeds >=33 m/s) and big (widespread circulation >~300 km), using numerical wave models and field data from northwest Australia. We then calculate the return time of big and strong cyclones, big cyclones of any strength and strong cyclones of any size, for each of 150 coral reef ecoregions using a global data set of past cyclones from 1985 to 2015. For the coral ecoregions that regularly were exposed to cyclones during that time, we find that 75% of them were exposed to at least one cyclone that was both big and strong. Return intervals of big and strong cyclones are already less than 5 years for 13 ecoregions, primarily in the cyclone-prone NW Pacific, and less than 10 years for an additional 14 ecoregions. We identify ecoregions likely at higher risk in future given projected changes in cyclone activity. Robust quantification of the spatial distribution of likely cyclone wave damage is vital not only for understanding past coral response to pressures, but also for predicting how this may change as the climate continues to warm and the relative frequency of the strongest cyclones rises.


Subject(s)
Anthozoa , Cyclonic Storms , Animals , Australia , Climate , Coral Reefs
3.
Oecologia ; 184(1): 151-160, 2017 05.
Article in English | MEDLINE | ID: mdl-28382479

ABSTRACT

Because water is essential to life, organisms have evolved a wide range of strategies to cope with water limitations, including actively searching for their preferred moisture levels to avoid dehydration. Plants use moisture gradients to direct their roots through the soil once a water source is detected, but how they first detect the source is unknown. We used the model plant Pisum sativum to investigate the mechanism by which roots sense and locate water. We found that roots were able to locate a water source by sensing the vibrations generated by water moving inside pipes, even in the absence of substrate moisture. When both moisture and acoustic cues were available, roots preferentially used moisture in the soil over acoustic vibrations, suggesting that acoustic gradients enable roots to broadly detect a water source at a distance, while moisture gradients help them to reach their target more accurately. Our results also showed that the presence of noise affected the abilities of roots to perceive and respond correctly to the surrounding soundscape. These findings highlight the urgent need to better understand the ecological role of sound and the consequences of acoustic pollution for plant as well as animal populations.


Subject(s)
Plant Roots , Water , Dehydration , Soil , Sound
4.
Proc Biol Sci ; 283(1836)2016 08 17.
Article in English | MEDLINE | ID: mdl-27534954

ABSTRACT

Species habitat associations are often complex, making it difficult to assess their influence on populations. Among coral reef fishes, habitat requirements vary among species and with ontogeny, but the relative importance of nursery and adult-preferred habitats on future abundances remain unclear. Moreover, adult populations may be influenced by recruitment of juveniles and assessments of habitat importance should consider relative effects of juvenile abundance. We conducted surveys across 16 sites and 200 km of reef to identify the microhabitat preferences of juveniles, sub-adults and adults of the damselfish Pomacentrus moluccensis Microhabitat preferences at different life-history stages were then combined with 6 years of juvenile abundance and microhabitat availability data to show that the availability of preferred juvenile microhabitat (corymbose corals) at the time of settlement was a strong predictor of future sub-adult and adult abundance. However, the influence of nursery microhabitats on future population size differed spatially and at some locations abundance of juveniles and adult microhabitat (branching corals) were better predictors of local populations. Our results demonstrate that while juvenile microhabitats are important nurseries, the abundance of coral-dependent fishes is not solely dependent on these microhabitats, especially when microhabitats are readily available or following large influxes of juveniles.


Subject(s)
Coral Reefs , Fishes , Animals , Anthozoa , Conservation of Natural Resources
5.
Oecologia ; 175(1): 63-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24390479

ABSTRACT

The nervous system of animals serves the acquisition, memorization and recollection of information. Like animals, plants also acquire a huge amount of information from their environment, yet their capacity to memorize and organize learned behavioral responses has not been demonstrated. In Mimosa pudica-the sensitive plant-the defensive leaf-folding behaviour in response to repeated physical disturbance exhibits clear habituation, suggesting some elementary form of learning. Applying the theory and the analytical methods usually employed in animal learning research, we show that leaf-folding habituation is more pronounced and persistent for plants growing in energetically costly environments. Astonishingly, Mimosa can display the learned response even when left undisturbed in a more favourable environment for a month. This relatively long-lasting learned behavioural change as a result of previous experience matches the persistence of habituation effects observed in many animals.


Subject(s)
Environment , Light , Mimosa/physiology , Plant Leaves/physiology
6.
Mar Environ Res ; 199: 106607, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879902

ABSTRACT

The extent to which juvenile abundance can predict future populations of lethrinids at Ningaloo Reef was assessed using size frequency data collected over 13 consecutive years. Annual abundance of juvenile lethrinids (<5 cm TL) was highest in northern Ningaloo during La Niña years, when seawater is warmer and oceanic currents stronger. Juvenile lethrinid abundance explained 35% of the variance in 1-2 year-old Lethrinus nebulosus abundance the following year, a steeper relationship in the north suggesting greater survival of juveniles. Juvenile lethrinid abundance was also positively correlated to abundance of 1-2 year-old L. atkinsoni in the southern region of Ningaloo. Abundance of juvenile lethrinids were however poor predictors of L. nebulosus and L. atkinsoni older than 2 years of age. Post settlement processes likely weaken the link between juvenile supply and abundance of lethrinids >2 years old making it difficult to accurately quantify the overall size of future lethrinid populations.


Subject(s)
Coral Reefs , Animals , Fishes/physiology , Fishes/growth & development , Population Dynamics , Environmental Monitoring , Population Density , El Nino-Southern Oscillation
7.
Ambio ; 53(5): 746-763, 2024 May.
Article in English | MEDLINE | ID: mdl-38355875

ABSTRACT

Partnerships in marine monitoring combining Traditional Ecological Knowledge and western science are developing globally to improve our understanding of temporal changes in ecological communities that better inform coastal management practices. A fuller communication between scientists and Indigenous partners about the limitations of monitoring results to identify change is essential to the impact of monitoring datasets on decision-making. Here we present a 5-year co-developed case study from a fish monitoring partnership in northwest Australia showing how uncertainty estimated by Bayesian models can be incorporated into monitoring management indicators. Our simulation approach revealed there was high uncertainty in detecting immediate change over the following monitoring year when translated to health performance indicators. Incorporating credibility estimates into health assessments added substantial information to monitoring trends, provided a deeper understanding of monitoring limitations and highlighted the importance of carefully selecting the way we evaluate management performance indicators.


Subject(s)
Conservation of Natural Resources , Animals , Uncertainty , Bayes Theorem , Australia
8.
Oecologia ; 186(1): 29-31, 2018 01.
Article in English | MEDLINE | ID: mdl-29214473
9.
Oecologia ; 170(2): 567-73, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22447198

ABSTRACT

The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals.


Subject(s)
Climate Change , Coral Reefs , Fishes/growth & development , Animals , Biodiversity , Conservation of Natural Resources , Population Dynamics
10.
Elife ; 92020 09 10.
Article in English | MEDLINE | ID: mdl-32909941

ABSTRACT

In 2016 we reported evidence for associative learning in plants (Gagliano et al., 2016). In view of the far-reaching implications of this finding we welcome the attempt made by Markel to replicate our study (Markel, 2020). However, as we discuss here, the protocol employed by Markel was unsuitable for testing for associative learning.


Subject(s)
Conditioning, Classical , Pisum sativum
11.
Proc Biol Sci ; 275(1634): 527-34, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18077258

ABSTRACT

Vertebrate animals localize sounds by comparing differences in the acoustic signal between the two ears and, accordingly, ear structures such as the otoliths of fishes are expected to develop symmetrically. Sound recently emerged as a leading candidate cue for reef fish larvae navigating from open waters back to the reef. Clearly, the integrity of the auditory organ has a direct bearing on what and how fish larvae hear. Yet, the link between otolith symmetry and effective navigation has never been investigated in fishes. We tested whether otolith asymmetry influenced the ability of returning larvae to detect and successfully recruit to favourable reef habitats. Our results suggest that larvae with asymmetrical otoliths not only encountered greater difficulties in detecting suitable settlement habitats, but may also suffer significantly higher rates of mortality. Further, we found that otolith asymmetries arising early in the embryonic stage were not corrected by any compensational growth mechanism during the larval stage. Because these errors persist and phenotypic selection penalizes asymmetrical individuals, asymmetry is likely to play an important role in shaping wild fish populations.


Subject(s)
Hearing/physiology , Otolithic Membrane/anatomy & histology , Perciformes/physiology , Sound Localization/physiology , Analysis of Variance , Animals , Australia , Larva/anatomy & histology , Larva/physiology , Pacific Ocean , Perciformes/anatomy & histology , Selection, Genetic
12.
Ecology ; 87(12): 3119-27, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17249236

ABSTRACT

Life history theory predicts a range of directional generic responses in life history traits with increasing organism size. Among these are the relationships between size and longevity, mortality, growth rate, timing of maturity, and lifetime reproductive output. Spanning three orders of magnitude in size, coral reef fishes provide an ecologically diverse and species-rich vertebrate assemblage in which to test these generic responses. Here we examined these relationships by quantifying the life cycles of three miniature species of coral reef fish from the genus Eviota (Gobiidae) and compared their life history characteristics with other reef fish species. We found that all three species of Eviota have life spans of < 100 days, suffer high daily mortality rates of 7-8%, exhibit rapid linear growth, and matured at an earlier than expected size. Although lifetime reproductive output was low, consistent with their small body sizes, short generation times of 47-74 days help overcome low individual fecundity and appear to be a critical feature in maintaining Eviota populations. Comparisons with other coral reef fish species showed that Eviota species live on the evolutionary margins of life history possibilities for vertebrate animals. This addition of demographic information on these smallest size classes of coral reef fishes greatly extends our knowledge to encompass the full size spectrum and highlights the potential for coral reef fishes to contribute to vertebrate life history studies.


Subject(s)
Life Cycle Stages/physiology , Perciformes/growth & development , Animals , Body Size , Ecosystem , Female , Fertility/physiology , Male , Pacific Ocean , Population Dynamics , Queensland
13.
Sci Rep ; 6: 38427, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27910933

ABSTRACT

In complex and ever-changing environments, resources such as food are often scarce and unevenly distributed in space and time. Therefore, utilizing external cues to locate and remember high-quality sources allows more efficient foraging, thus increasing chances for survival. Associations between environmental cues and food are readily formed because of the tangible benefits they confer. While examples of the key role they play in shaping foraging behaviours are widespread in the animal world, the possibility that plants are also able to acquire learned associations to guide their foraging behaviour has never been demonstrated. Here we show that this type of learning occurs in the garden pea, Pisum sativum. By using a Y-maze task, we show that the position of a neutral cue, predicting the location of a light source, affected the direction of plant growth. This learned behaviour prevailed over innate phototropism. Notably, learning was successful only when it occurred during the subjective day, suggesting that behavioural performance is regulated by metabolic demands. Our results show that associative learning is an essential component of plant behaviour. We conclude that associative learning represents a universal adaptive mechanism shared by both animals and plants.


Subject(s)
Association Learning/physiology , Pisum sativum/growth & development , Plant Physiological Phenomena , Animals , Behavior, Animal , Pisum sativum/genetics
14.
Science ; 353(6295): 169-72, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27387951

ABSTRACT

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.


Subject(s)
Anthozoa/physiology , Climate Change , Coral Reefs , Extinction, Biological , Kelp/physiology , Tropical Climate , Animals , Australia , Fishes , Seawater , Temperature
15.
Sci Rep ; 5: 13193, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26282341

ABSTRACT

Most colour patterns in animals represent an elegant compromise between conspicuousness to ensure effective communication with preferred receivers and camouflage to avoid attracting the attention of unwanted predators. Many species, including several coral reef fishes, overcome this conflict by using ultraviolet (UV) colouration and signalling, as these colours are visible only over short distances and are often invisible to their predators. Despite a great interest in their behavioural significance and ecological influence on survival, little is known about when these colours first develop on the bodies of free-living animals. Here we show for the first time that the UV facial patterns of a coral reef fish do not develop in captivity but only when juveniles experience the socio-behavioural conditions of their natural environment. Using field and laboratory experiments, we determined that the onset and early development of these UV facial markings did not occur at metamorphosis. Instead, juveniles developed the UV markings during their first two weeks on the reef. Exposure to different reef environments revealed significant plasticity in the development of these markings. The direct or indirect (through intraspecific interactions) exposure to predators is a likely candidate trigger for the plastic development of these UV markings in the wild.


Subject(s)
Adaptation, Physiological/physiology , Color Perception/physiology , Ecosystem , Morphogenesis/physiology , Skin Pigmentation/physiology , Ultraviolet Rays , Animals , Face/physiology , Fishes , Light , Scattering, Radiation
16.
PLoS One ; 10(11): e0138136, 2015.
Article in English | MEDLINE | ID: mdl-26529406

ABSTRACT

Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.


Subject(s)
Anthozoa/physiology , Ecosystem , Perciformes/physiology , Animals , Coral Reefs , Indian Ocean , Pacific Ocean , Population Dynamics
18.
PLoS One ; 8(2): e55938, 2013.
Article in English | MEDLINE | ID: mdl-23418480

ABSTRACT

Eyespots on the body of many animals have long been assumed to confer protection against predators, but empirical evidence has recently demonstrated that this may not always be the case and suggested that such markings may also serve other purposes. Clearly, this raises the unresolved question of what functions do these markings have and do they contribute to an individual's evolutionary fitness in the wild. Here, we examined the occurrence of eyespots on the dorsal fin of a coral reef damselfish (Pomacentrus amboinensis), where these markings are typical of the juvenile stage and fade away as the fish approaches sexual maturation to then disappear completely in the vast majority of, but not all, adult individuals. By exploring differences in body shape among age and gender groups, we found that individuals retaining the eyespot into adulthood are all sexually mature males, suggesting that these eyespots may be an adult deceptive signal. Interestingly, the body shape of these individuals resembled more closely that of immature females than mature dominant males. These results suggest that eyespots have multiple roles and their functional significance changes within the lifetime of an animal from being a juvenile advertisement to a deceptive adult signal. Male removal experiments or colour manipulations may be necessary to establish specific functions.


Subject(s)
Coral Reefs , Perciformes/genetics , Skin Pigmentation/genetics , Animals , Biological Evolution , Female , Male
19.
Commun Integr Biol ; 6(4): e24586, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23986808

ABSTRACT

Deception is ubiquitous in plant and animal kingdoms and is widely thought to provide selective advantages to the individual and evolutionary success to the species. Mimicry, a form of deception whereby an individual imitates their model to advantage by closely resembling their behavior or appearance, is particularly well documented and represented by the peripheral eyespots seen on the wings of many butterfly species. The significance of butterfly eyespots has been convincingly demonstrated to serve as an anti-predatory function either by imitation of a predator's own dangerous enemies (intimidation hypothesis) or by deflecting predator strikes toward less-vital parts of the body (deflection hypothesis). A convincing and compelling explanation in butterflies, the functional role of eyespots as anti-predatory devices has become a widely held and firmly entrenched belief that has been freely adopted into other systems. Here we comment on a recent paper that demonstrates a vastly different role for eyespots, that of intra-specific male-male competition, and make the point that even long-held beliefs need to be tested and challenged under different contexts if we are not to be deceived ourselves.

20.
PLoS One ; 8(7): e69863, 2013.
Article in English | MEDLINE | ID: mdl-23922829

ABSTRACT

Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10-35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs.


Subject(s)
Coral Reefs , Animals , Anthozoa , Australia , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL