Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Chemistry ; : e202402148, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962899

ABSTRACT

The high risk of CO poisoning justifies the need for indoor air quality control and warning systems based on the detection of low concentrations (ppm-ppb) of CO. Cobalt corrole complexes selectively bind CO vs. O2, CO2, N2, opening new fields of applications. By combining the CO chemisorption properties of cobalt corroles with the known sorption capacity of MOFs, we hope to obtain high performance sensing materials for CO detection. In addition, the exposed metal sites of MOFs lead to CO2 physisorption, allowing the co-detection of CO and CO2. In this work, PCN-222 a stable Zr-based MOF made from Ni(TCPP) with natural vacancies has been used as a porous matrix for the grafting of electron-poor metallocorroles. The materials were characterized by powder XRD, SEM and optical microscopy, BET analyses and gas adsorption measurements at 298 K. No degradation of the crystalline structure of PCN-222 was observed. At 1 atm, the adsorbed CO(g) volumes measured for the best materials were 12.15 cm3 g-1 and 14.01 cm3 g-1 for CoCorr2@PCN-222 and CoCorr3@PCN-222 respectively, and both materials exhibited high CO chemisorption and selectivity against O2, N2, and CO2 at low pressure due to the highest energy of the chemisorption process vs physisorption. (198 Words).

2.
Inorg Chem ; 63(19): 8739-8749, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696617

ABSTRACT

Ground-state and time-dependent density functional theory (TDDFT) calculations with the long-range-corrected, Coulomb-attenuating CAMY-B3LYP exchange-correlation functional and large, all-electron STO-TZ2P basis sets have been used to examine the potential "inverse hypercorrole" character of meso-p-nitrophenyl-appended dicyanidocobalt(III) corrole dianions. The effect is most dramatic for 5,15-bis(p-nitrophenyl) derivatives, where it manifests itself in intense NIR absorptions. The 10-aryl groups in these complexes play a modulatory role, as evinced by experimental UV-visible spectroscopic and electrochemical data for a series of 5,15-bis(p-nitrophenyl) dicyanidocobalt(III) corroles. TDDFT (CAMY-B3LYP) calculations ascribe these features clearly to a transition from the corrole's a2u-like HOMO (retaining the D4h irrep used for metalloporphyrins) to a nitrophenyl-based LUMO. The outward nature of this transition contrasts with the usual phenyl-to-macrocycle direction of charge transfer transitions in many hyperporphyrins and hypercorroles; thus, the complexes studied are aptly described as inverse hypercorroles.

3.
Bioorg Med Chem ; 109: 117810, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906069

ABSTRACT

The antimicrobial activity of new acid-functionalized porphyrins, with or without ultra-high irradiance, was investigated. Antibacterial efficacy was evaluated against Staphylococcus aureus (methicillin-resistant or methicillin-sensitive strains) and antifungal efficacy was evaluated against the yeast Candida albicans and the filamentous fungi Aspergillus fumigatus. Overall, the porphyrins tested are more effective against S. aureus. The best results were obtained with zinc diacid porphyrins 4 and 5 after only 3 min of ultra-high irradiation (500 mW/cm2, 405 nm), demonstrating that acid-functionalized porphyrins are promising as novel antimicrobial drugs for surface disinfection.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Candida albicans , Microbial Sensitivity Tests , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Porphyrins/chemical synthesis , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Positive Bacteria/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Fungi/drug effects
4.
Bioorg Med Chem Lett ; 82: 129167, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36736706

ABSTRACT

Herein, we report the synthesis and evaluation of carboxylic acid corroles bearing either one, two, three of four carboxylic groups as gram-positive antibacterial agents against two strains of S. aureus, one methicillin-sensible (MSSA) and the other methicillin-resistant (MRSA). Lead compounds 5 and 6 show low minimum inhibitory concentrations (MICs) of 0.78 µg/mL against both MSSA and MRSA. These molecules, previously underexplored as antibacterial agents, can now serve as a new scaffold for antimicrobial development.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Carboxylic Acids/pharmacology , Methicillin , Microbial Sensitivity Tests
5.
Inorg Chem ; 62(15): 6109-6127, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37011022

ABSTRACT

A mono-DMSO cobalt meso-CF3 corrole, formulated as (CF3)3CorCo(DMSO), where (CF3)3Cor is the trianion of 5,10,15-tris(trifluoromethyl)corrole, was synthesized and characterized as to its spectral and electrochemical properties in nonaqueous media with a focus on its coordination chemistry and electronic structure. Cyclic voltammetric measurements showed more facile reductions and difficult oxidations compared to the cobalt triarylcorrole possessing p-CF3Ph units at the meso-positions, a result consistent with the enhanced inductive effect of the electron-withdrawing trifluoromethyl substituents linked directly at the meso-carbon atoms of the macrocycle. The effects of DMSO, pyridine, and cyanide anions (CN-) on the electrochemistry and spectral properties of the compound were investigated, and it was found that only two molar equivalents are needed to form the bis-CN adduct, which exhibited two 1-electron oxidations at 0.27 and 0.95 V vs saturated calomel electrode (SCE) in CH2Cl2/0.1 M TBAP. The sites of electron transfer in the first oxidation and reduction were investigated by spectroelectrochemistry and confirmed that the first electron addition affords a Cor3-CoII complex under all solution conditions independent of the initial coordination and/or electronic configuration (i.e., innocent Cor3-CoIII or noninnocent Cor•2-CoII). In contrast, data for the first oxidation suggests that the site of electron abstraction (ligand or metal) depended upon coordination of the neutral and in situ generated complexes under the various solution conditions, leading to a Co(IV)-corrole3- product for both the bis-pyridine and bis-cyanide adducts.

6.
Inorg Chem ; 61(50): 20576-20586, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36469703

ABSTRACT

A series of cobalt nitrophenylcorroles were spectrally characterized in CH2Cl2, and under certain solution conditions, several compounds were shown to exhibit hypercorrole spectra resulting from charge transfer interactions from the corrole π-system to the redox-active meso-NO2Ph substituents. The resulting spectral pattern has not previously been reported for metallocorroles and in the case of the cobalt derivatives was shown to depend upon the number and position of the meso-nitrophenyl groups on the macrocycle, the position of the NO2 substituent on the meso-phenyl ring(s) (para or meta), and the electronic structure of the corrole, which can exist in its innocent or noninnocent form depending in large part upon the type and number of axial ligands. Cobalt corroles bearing p-nitrophenyl groups at the 5,15- or 5,10,15-positions of the macrocycle exhibited the most marked hypercorrole spectra under solution conditions where the complex was innocent (i.e., Cor3-CoIII), and a systematic analysis of the spectral data suggests the root of this perturbation to be a corrole-to-aryl interaction (i.e., ligand-to-ligand charge transfer or LLCT). The largest interaction between the π-system and the NO2Ph substituents was seen upon coordination of anionic cyanide (CN-) axial ligands to the Co(III) center of the bis-(CN-)-5,15-dinitrophenyl derivative, resulting in a cobalt hypercorrole spectrum where the broad Q-band was red-shifted even further into the NIR region and located at 795 nm in CH2Cl2 and 827 nm in pyridine. Cyclic voltammetry of the bis-CN- adducts showed that the first electrons are added to the LUMOs of the p-NO2Ph substituents rather than the corrole, while the same orbitals for the mono-CN- adducts are nearly degenerate. This redox behavior contrasts with what is seen for the noninnocent nitrophenyl corroles having "normal" unperturbed UV-vis spectra where the first reduction involves the π-system of the macrocycle, followed by reduction of the p-NO2Ph groups at more negative potentials.


Subject(s)
Porphyrins , Ligands , Porphyrins/chemistry , Electrons , Cobalt
7.
J Am Chem Soc ; 143(32): 12567-12577, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34346684

ABSTRACT

The quest for small molecules that strongly bind to G-quadruplex-DNA (G4), so-called G4 ligands, has invigorated the G4 research field from its very inception. Massive efforts have been invested to discover or rationally design G4 ligands, evaluate their G4-interacting properties in vitro through a series of now widely accepted and routinely implemented assays, and use them as innovative chemical biology tools to interrogate cellular networks that might involve G4s. In sharp contrast, only uncoordinated efforts aimed at developing small molecules that destabilize G4s have been invested to date, even though it is now recognized that such molecular tools would have tremendous application in neurobiology as many genetic and age-related diseases are caused by an overrepresentation of G4s. Herein, we report on our efforts to develop in vitro assays to reliably identify molecules able to destabilize G4s. This workflow comprises the newly designed G4-unfold assay, adapted from the G4-helicase assay implemented with Pif1, as well as a series of biophysical and biochemical techniques classically used to study G4/ligand interactions (CD, UV-vis, PAGE, and FRET-melting), and a qPCR stop assay, adapted from a Taq-based protocol recently used to identify G4s in the genomic DNA of Schizosaccharomyces pombe. This unique, multipronged approach leads to the characterization of a phenylpyrrolocytosine (PhpC)-based G-clamp analog as a prototype of G4-disrupting small molecule whose properties are validated through many different and complementary in vitro evaluations.


Subject(s)
DNA/chemistry , Small Molecule Libraries/chemistry , G-Quadruplexes , Humans , Ligands , Molecular Structure
8.
Inorg Chem ; 59(21): 15913-15927, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33064946

ABSTRACT

A series of "N2O2-type" manganese dipyrrin-bisphenols (DPP), formulated as (Ar)DPPMn, where Ar = pentafluorophenyl (F5Ph), phenyl (Ph), or mesityl (Mes), were electrochemically and spectroscopically characterized in nonaqueous media with and without added anions in the form of tetrabutylammonium salts (TBAX where X = ClO4-, PF6-, BF4-, F-, Cl-, OH-, or CN-). Two major one-electron reductions are observed under most solution conditions, the first of which is assigned as a MnIII/II process and the second as electron addition to the π-ring system as confirmed by spectroelectrochemistry. Each MnIII complex also exhibits one or two one-electron oxidations, the exact number depending upon the positive potential limit of the electrochemical solvent. The two oxidations are separated by 580-590 mV in CH3CN containing 0.1 M TBAPF6 and are assigned as π-ring-centered electron transfers to stepwise form a (Ar)DPPMnIII π-cation radical and dication under these solution conditions. Comparisons are made between redox properties of (Ar)DPPMn and manganese(III) porphyrins, corroles, and corrolazines each of which contains an innocent trianionic complexing ligand. The redox behavior and spectroscopic properties of [(Ar)DPPMn]n where n = 0, -1, or +1 are also compared to that of other structurally related [(Ar)DPPM]n complexes under similar solution conditions where M = CoII, CuII, BIII, or AuIII.

9.
Inorg Chem ; 59(12): 8562-8579, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32452674

ABSTRACT

Three mono-CN ligated anionic cobalt A3-triarylcorroles were synthesized and investigated as to their spectroscopic and electrochemical properties in CH2Cl2, pyridine (Py), and dimethyl sulfoxide (DMSO). The newly synthesized corroles provide the first examples of air-stable cobalt corroles with an anionic axial ligand and are represented as [(Ar)3CorCoIII(CN)]-TBA+, where Cor is the trivalent corrole macrocycle, Ar is p-(CN)Ph, p-(CF3)Ph, or p-(OMe)Ph, and TBA+ is the tetra-n-butylammonium (TBA) cation. Multiple redox reactions are observed for each mono-CN derivative with a key feature being a more facile first oxidation and a more difficult first reduction in all three solvents as compared to all previously examined corroles with similar meso- and ß-pyrrole substituents. Formation constants (log K) for conversion of the five-coordinate mono-CN complex to its six-coordinate bis-CN form ranged from 102.8 for Ar = p-(OMe)Ph to 104.7 for Ar = p-(CN)Ph in DMSO as determined by spectroscopic methodologies. The in situ generated bis-CN complexes, represented as [(Ar)3CorCoIII(CN)2]2-(TBA+)2, and the mixed ligand complexes, represented as [(Ar)3CorCoIII(CN)(Py)]-TBA+, were also investigated as to their electrochemical and spectroscopic properties. UV-visible spectra and electrode reactions of the synthesized mono-CN derivatives are compared with the neutral mono-DMSO cobalt corrole complexes and the in situ generated bis-CN and bis-Py complexes, and the noninnocent (or innocent) nature of each cobalt corrole system is addressed. The data demonstrate the ability of the CN- axial ligand(s) to stabilize the high-valent forms of the metallocorrole, leading to systems with innocent macrocyclic ligands. Although a number of six-coordinate cobalt(III) corroles with N-donor ligands were characterized in the solid state, a dissociation of one axial ligand readily occurs in nonaqueous solvents, and this behavior contrasts with the high stability of the currently studied bis-CN adducts in CH2Cl2, pyridine, or DMSO. Linear free energy relationships were elucidated between the meso-phenyl Hammett substituent constants (Σσ) and the measured binding constants, the redox potentials, and the energy of the band positions in the mono-CN and bis-CN complexes in their neutral or singly oxidized forms, revealing highly predictable trends in the physicochemical properties of the anionic corroles.

10.
Inorg Chem ; 59(1): 595-611, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31825638

ABSTRACT

A new series of cobalt A3-triarylcorroles were synthesized and the compounds examined as to their electrochemical and spectroscopic properties in CH2Cl2 or dimethyl sulfoxide (DMSO) containing 10 different anions added to the solution in the form of tetrabutylammonium salts. The investigated anions were PF6-, BF4-, HSO4-, ClO4-, Br-, I-, Cl-, OAc-, F-, OTs-, and CN-, all but three of which were found to facilitate reduction of the cobalt corrole in dilute CH2Cl2 solutions, as determined by a combination of UV-vis spectroscopy and spectroelectrochemistry. The synthesized corroles are represented as (Ar)3CorCo(DMSO), where Ar is a meso-phenyl group containing one of 10 different electron-donating or -withdrawing substituents. The axial DMSO ligand was found to dissociate in dilute (10-5 M) CH2Cl2 solutions, but this was not the case at the higher electrochemical concentration of 10-3 M, where the investigated corroles exhibit a rich redox reactivity, undergoing up to five reversible one-electron-transfer reactions under the different solution conditions. The reversible half-wave potentials for generation of the singly oxidized corroles varied by over 1.0 V with a change in the electron-donating or -withdrawing meso-phenyl substituents and type of anion added to the solution, ranging from E1/2 = 0.83 V in one extreme to -0.42 V in the other. Much smaller shifts in the potentials (on the order of ∼210 mV) were observed for the reversible first reduction as a function of changes of the anion and/or corrole substituents, with the only exception being in the case of CN-, where the E1/2 values in CH2Cl2 ranged from +0.08 V in solutions containing 0.1 M TBAClO4 to >-1.8 V upon the addition of CN-.

11.
Inorg Chem ; 58(12): 7677-7689, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-30653313

ABSTRACT

Three cobalt dipyrrin-bisphenol (DPPCo) complexes with different meso-aryl groups (pentafluorophenyl, phenyl, and mesityl) were synthesized and characterized based on their electrochemistry and spectroscopic properties in nonaqueous media. Each DPPCo undergoes multiple oxidations and reductions with the potentials, reversibility, and number of processes depending on the specific solution conditions, the specific macrocyclic substituents, and the type and number of axially coordinated ligands on the central cobalt ion. Theoretical calculations of the compounds with different coordination numbers are given in the current study in order to elucidate the cobalt-ion oxidation state and the innocence or noninnocence of the macrocyclic ligand as a function of the changes in the solvent properties and degree of axial coordination. Electron paramagnetic resonance spectra of the compounds are obtained to experimentally assess the electron spin state. An X-ray structure of the six-coordinate complex is also presented. The investigated chemical properties of DPPCo compounds under different solution conditions are compared to those of cobalt corroles, where the macrocycle and metal ion also possess formal 3- and 3+ oxidation states in their air-stable forms.

12.
Inorg Chem ; 57(3): 1226-1241, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29336566

ABSTRACT

A series of bis(pyridine)cobalt corroles with one or three nitrophenyl groups on the meso positions of the corrole macrocycle were synthesized and characterized as to their electrochemical and spectroscopic properties in dichloromethane, benzonitrile, and pyridine. The potentials for each electrode reaction were measured by cyclic voltammetry and the electron-transfer mechanisms evaluated by analysis of the electrochemical data combined with UV-visible spectra of the neutral, electroreduced, and electroxidized forms of the corroles. The proposed electronic configurations of the initial compounds and the prevailing redox reactions involving the electroactive central cobalt ion, the electroactive conjugated macrocycle, and the electroactive meso-nitrophenyl groups are all discussed in terms of solvent binding and the number of the nitrophenyl groups and other substituents on the meso-nitrophenyl rings of the compounds.

13.
Chemistry ; 23(52): 12833-12844, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28658563

ABSTRACT

A series of open-chain pentapyrroles and sapphyrins with highly electron-withdrawing substituents (i.e., CN, CF3 , or CO2 Me) on the meso-phenyl rings was synthesized and characterized as to the spectral properties, protonation reactions, and electrochemistry in non-aqueous media. The investigated compounds are represented as (Ar)4 PPyH3 and (Ar)4 SapH3 where PPy and Sap correspond to the tri-anion of the open-chain pentapyrrole and sapphyrin, respectively, and Ar=p-CNPh, p-CF3 Ph, or p-CO2 MePh. UV/Vis and 1 H NMR spectroscopy as well as mass spectrometry data are given for the confirmation of the structures for the newly synthesized compounds. An X-ray structure for one of the pentapyrroles, that is, (p-CF3 Ph)4 PPyH3 (2), is also presented. The protonation processes were examined by UV/Vis absorption spectroscopy during the titration of the compounds with trifluoroacetic acid (TFA) in CH2 Cl2 . Equilibrium constants for the protonation reactions were calculated by using both the Hill equation and the mole ratio method. The protonation-initiated conversion of pentapyrroles to sapphyrins upon oxidation was also investigated. Cyclic voltammetry was used to measure the redox potentials in CH2 Cl2 , PhCN, and/or pyridine (Py). Electrochemical properties, protonation constants, and chemical reactions of the six compounds in the two series were then analyzed as a function of the solvent properties and the type of the electron-withdrawing groups on the meso-phenyl rings.

14.
Inorg Chem ; 56(14): 8045-8057, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28661664

ABSTRACT

The electrochemistry and spectroelectrochemistry of four tetrapositively charged and two tetranegatively charged porphyrins were characterized in two nonaqueous solvents (dimethyl sulfoxide and N,N-dimethylformamide) containing 0.1 M tetra-n-butylammonium perchlorate. The tetrapositively charged compounds are represented by the tetrapyridylporphyrins [TRPyPM]4+(X-)4, where R is a methyl or [2-[2-(2-methoxy)ethoxy]ethoxy]ethyl group, M = MnIIII, MnIIICl, CuII, or PdII, and X = I- or Cl-. The tetranegatively charged porphyrins are represented by the tetrasulfonato derivatives [TPPSMn(OAc)]4-(NH4+)4 and [TArPSMn(OAc)]4-(NH4+)4, where Ar = 4-O-[2-[2-(2-methoxy)ethoxy]ethoxy]ethylphenyl. Up to seven electrons can be added to the tetrapyridyl porphyrins in three to five reversible reductions, while up to four electrons can be added to the tetrasulfonato derivatives in four reversible processes. Three types of electrochemical behaviors are observed for reduction of the pyridinium groups on the tetrapyridyl porphyrins. One is for the manganese(II) complexes where the four equivalent pyridinium groups are reduced in a single overlapping four-electron-transfer step. Another is for the free-base porphyrin, where four well-separated one-electron reductions occur, while the third is for copper(II) and palladium(II) derivatives, where reduction of the four pyridinium groups proceeds in two well-separated two-electron-transfer steps. The electrochemical and spectroelectrochemical properties were also characterized for a 1:1 mixture of the tetrapositively and tetranegatively charged manganese porphyrins to investigate possible interactions between these two species. An interaction between the two porphyrins was indeed observed in both solvents after electroreduction of the four pyridinium groups, which led to a substantial change in the mechanism for reduction of the pyridinium groups from an initial single overlapping four-electron-reduction process to two well-separated two-electron-transfer processes.

15.
Chemistry ; 22(14): 4971-9, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26938146

ABSTRACT

The synthesis of dyad and triad aza-BODIPY-porphyrin systems in two steps starting from an aryl-substituted aza-BODIPY chromophore is described. The properties of the resulting aza-BODIPY-porphyrin conjugates have been extensively investigated by means of electrochemistry, spectroelectrochemistry, and absorption/emission spectroscopy. Fluorescence measurements have revealed a dramatic loss of luminescence intensity, mainly due to competitive energy transfer and photoinduced electron transfer involving charge separation followed by recombination.

16.
Inorg Chem ; 55(18): 9230-9, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27603751

ABSTRACT

The C3-symmetric cyclotriveratrylene (CTV) was covalently bonded via click chemistry to 1, 2, 3, and 6 zinc(II) porphyrin units to various host for C60. The binding constants, Ka, were measured from the quenching of the porphyrin fluorescence by C60. These constants vary between 400 and 4000 M(-1) and are considered weak. Computer modeling demonstrated that the zinc(II) porphyrin units, [Zn], exhibit a strong tendency to occupy the CTV cavity, hence blocking the access for C60 to land on this site. Instead, the pincer of the type [Zn]----[Zn] and in one case [Zn]----CTV, were found to be the most probable geometry to promote host-guest associations in these systems.

17.
Chemistry ; 21(34): 12018-25, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26177731

ABSTRACT

Herein the synthesis, spectroscopic characterization, two-photon absorption and electrochemical properties of 3,6-disubstituted carbazole tweezers is reported. A dimer resulting from a Glaser homocoupling was isolated during a Sonogashira coupling reaction between a diethynyl-carbazole spacer and a 5-bromo-triarylporphyrin and the properties of this original compound were compared with the 3,6-disubstituted carbazole bisporphyrin tweezers. The dyads reported herein present a two-photon absorption maximum at 920 nm with two-photon absorption cross-section in the 1200 GM range. Despite a strong linear absorption in the Soret region and moderate fluorescence quantum yield, they both lead to a high brightness reaching 30 000 M(-1) cm(-1) .

18.
Org Biomol Chem ; 13(25): 7034-9, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26040925

ABSTRACT

Scientists are currently truly committed to enhance the specificity of chemotherapeutics that target DNA. To this end, sequence-specific drugs have progressively given way to structure-specific therapeutics. However, while numerous strategies have been implemented to design high-affinity candidates, strategies devoted to the design of high-selectivity ligands are still rare. Here we report on such an approach via the study of an amphiphilic compound, TEGPy, that self-assembles at a liquid/solid interface to provide nanosized objects that are stable in water. The resulting aggregates, identified through atomic force microscopy measurements, were found to disassemble upon interaction with DNA in a structure-specific manner (quadruplex- versus duplex-DNA). Our results provide a fertile ground for devising new strategies aiming at concomitantly enhancing DNA structural specificity and the water-solubility of aggregation-prone ligands.


Subject(s)
DNA/chemistry , Porphyrins/chemistry , Surface-Active Agents/chemistry , G-Quadruplexes , Ligands , Microscopy, Atomic Force , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Nucleic Acid Conformation
19.
Beilstein J Org Chem ; 11: 2202-8, 2015.
Article in English | MEDLINE | ID: mdl-26664643

ABSTRACT

The Cu(I)-catalysed Huisgen cycloaddition, known as "click" reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT) bimodal contrast agents incorporating one metal (Mn, Gd) for the enhancement of contrast for MRI applications and one "cold" metal (Cu, Ga, In) for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA) in MRI.

20.
Invest New Drugs ; 32(4): 587-97, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24691673

ABSTRACT

We previously selected two melanin-targeting radioligands [(125)I]ICF01035 and [(125)I]ICF01040 for melanoma-targeted (125)I radionuclide therapy according to their pharmacological profile in mice bearing B16F0 tumors. Here we demonstrate in vitro that these compounds present different radiotoxicities in relation to melanin and acidic vesicle contents in B16F0, B16F0 PTU and A375 cell lines. ICF01035 is effectively observed in nuclei of achromic (A375) melanoma or in melanosomes of melanized melanoma (B16F0), while ICF01040 stays in cytoplasmic vesicles in both cells. [(125)I]ICF01035 induced a similar survival fraction (A50) in all cell lines and led to a significant decrease in S-phase cells in amelanotic cell lines. [(125)I]ICF01040 induced a higher A50 in B16 cell lines compared to [(125)I]ICF01035 ones. [(125)I]ICF01040 induced a G2/M blockade in both A375 and B16F0 PTU, associated with its presence in cytoplasmic acidic vesicles. These results suggest that the radiotoxicity of [(125)I]ICF01035 and [(125)I]ICF01040 are not exclusively reliant on DNA alterations compatible with γ rays but likely result from local dose deposition (Auger electrons) leading to toxic compound leaks from acidic vesicles. In vivo, [(125)I]ICF01035 significantly reduced the number of B16F0 lung colonies, enabling a significant increase in survival of the treated mice. Targeting melanosomes or acidic vesicles is thus an option for future melanoma therapy.


Subject(s)
Acridines/administration & dosage , Iodine Radioisotopes/administration & dosage , Melanoma, Experimental/diet therapy , Melanoma, Experimental/drug therapy , Radiopharmaceuticals/administration & dosage , Acridines/metabolism , Animals , Cell Line, Tumor , Electrons , Humans , Iodine Radioisotopes/metabolism , Male , Mice , Mice, Inbred C57BL , Radiopharmaceuticals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL