Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Vis ; 17: 2596-604, 2011.
Article in English | MEDLINE | ID: mdl-22025894

ABSTRACT

PURPOSE: The rainbow smelt (Osmerus mordax), is a teleost fish, which avoids freezing by becoming virtually isosmotic with seawater. The effects that such massive changes in osmolarity have on both its visual system and its highly evolved and specialized circulation are not known. New knowledge about the osmotic adaptation of the rainbow smelt eye is highly relevant to the adaptation and survival of this species and to its ability to feed as a visual predator in the face of environmental pressures. Moreover, the molecular physiologic response of the smelt to osmotic stress might provide valuable insights into understanding and managing mammalian pathological hyperosmolarity conditions, such as diabetes. We undertook the present study to provide an initial assessment of gene expression in ocular vasculature during osmotic adaptation in rainbow smelt. METHODS: Immunohistochemistry with species cross reactive antibodies was used to assess blood vessel protein expression in paraffin sections. Western blotting was used to further verify antibody specificity for orthologs of mammalian blood vessel proteins in rainbow smelt. Thermal hysteresis and the analysis of glycerol concentrations in vitreous fluid were used to assess the physiologic adaptive properties of cold stressed eyes. RESULTS: Glycerol levels and osmotic pressure were significantly increased in the vitreal fluid of smelt maintained at <0.5 °C versus those maintained at 8-10 °C. Compared to the 8-10 °C adapted specimens, the rete mirabile blood vessels and connecting regions of the endothelial linings of the choroidal vessels of the <0.5 °C adapted specimens showed a higher expression level of Tubedown (Tbdn) protein, a marker of the endothelial transcellular permeability pathway. Expression of the zonula occludens protein ZO-1, a marker of the endothelial paracellular permeability pathway showed a reciprocal expression pattern and was downregulated in rete mirabile blood vessels and connecting regions in the endothelial linings of choroidal vessels in <0.5 °C adapted specimens. Smelt orthologs of the mammalian Tbdn and zoluna occludens protein 1 (ZO-1) proteins were also detected by western blotting using anti-mammalian antibodies raised against the same epitopes as those used for immunohistochemistry. CONCLUSIONS: This work provides the first evidence that molecules known to play a role in ocular vascular homeostasis are expressed and may be differentially regulated during anti-freezing cold adaptation in smelt eyes. We propose a hypothesis that in a state of cold-induced hyperosmolarity, changes in ZO-1 expression are associated with the passage of small solutes from the plasma space to ocular fluid, while changes in Tbdn expression regulate the passage of proteins between the ocular fluid and plasma space. This work also provides fundamental insight into the mechanisms underlying the adaptation of the blood-retinal barrier to metabolically relevant compounds such as glycerol.


Subject(s)
Adaptation, Physiological , Antifreeze Proteins/biosynthesis , Aquatic Organisms/physiology , Fish Proteins/biosynthesis , Glycerol/blood , Osmeriformes/physiology , Animals , Antifreeze Proteins/genetics , Biomarkers/metabolism , Blood Vessels/metabolism , Blood-Retinal Barrier/metabolism , Blotting, Western , Cold Temperature , Fish Proteins/genetics , Freezing , Gene Expression Regulation , Immunohistochemistry , Osmolar Concentration , Osmotic Pressure/physiology , Vitreous Body/metabolism
2.
FEBS J ; 279(12): 2215-30, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22520964

ABSTRACT

During winter, the coastal waters of Newfoundland can be considered a 'freeze risk ecozone' for teleost fishes, where the shallower habitats pose a high (and the deeper habitats a low) risk of freezing. Atlantic (Anarhichas lupus) and spotted (Anarhichas minor) wolffish, which inhabit these waters, reside at opposite ends of this ecozone, with the Atlantic wolffish being the species facing the greatest risk, because of its shallower niche. In order to resist freezing, this species secretes five times the level of antifreeze protein (AFP) activity into the plasma than does the spotted wolffish. The main basis for this interspecific difference in AFP levels is gene dosage, as the Atlantic wolffish has approximately three times as many AFP gene copies as the spotted wolffish. In addition, AFP transcript levels in liver (the primary source of circulating AFPs) are several times higher in the Atlantic wolffish. One explanation for the difference in gene dosage and transcript levels is the presence of tandemly arrayed repeats in the latter, which make up two-thirds of its AFP gene pool. Such repeats are not present in the spotted wolffish. The available evidence indicates that the two species diverged from a common ancestor at a time when the ebb and flow of northern glaciations would have resulted in the emergence of shallow water 'freeze risk ecozones'. The results of this study suggest that the duplication/amplification of AFP genes in a subpopulation of ancestral wolffish would have facilitated the exploitation of this high-risk habitat, resulting in the divergence and evolution of modern-day Atlantic and spotted wolffish species.


Subject(s)
Antifreeze Proteins/genetics , Fishes/metabolism , Amino Acid Sequence , Animals , Antifreeze Proteins/chemistry , Blotting, Northern , Blotting, Southern , Fishes/genetics , Gene Amplification/genetics , Molecular Sequence Data , Multigene Family/genetics , Polymerase Chain Reaction , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL