Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Blood ; 141(10): 1209-1220, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36375119

ABSTRACT

Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Genes, cdc , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Crk-Associated Substrate Protein/genetics , Crk-Associated Substrate Protein/metabolism
2.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37289551

ABSTRACT

MOTIVATION: Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling pathways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral microenvironment. RESULTS: We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intracellular regulation obtained from the Boolean model.Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tumoral phenotypes. AVAILABILITY AND IMPLEMENTATION: https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.


Subject(s)
Models, Biological , Models, Theoretical , Humans , Computer Simulation , Signal Transduction/genetics , Neoplasm Invasiveness , Tumor Microenvironment
3.
Opt Express ; 32(11): 19480-19494, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859082

ABSTRACT

Confining light illumination in the three dimensions of space is a challenge for various applications. Among these, optogenetic methods developed for live experiments in cell biology would benefit from such a localized illumination as it would improve the spatial resolution of diffusive photosensitive proteins leading to spatially constrained biological responses in specific subcellular organelles. Here, we describe a method to create and move a focused evanescent spot, at the interface between a glass substrate and an aqueous sample, across the field of view of a high numerical aperture microscope objective, using a digital micro-mirror device (DMD). We show that, after correcting the optical aberrations, light is confined within a spot of sub-micron lateral size and ∼100 nm axial depth above the coverslip, resulting in a volume of illumination drastically smaller than the one generated by a standard propagative focus. This evanescent focus is sufficient to induce a more intense and localized recruitment compared to a propagative focus on the optogenetic system CRY2-CIBN, improving the resolution of its pattern of activation.


Subject(s)
Light , Optogenetics , Optogenetics/methods , Humans , Cryptochromes/metabolism
4.
EMBO Rep ; 23(9): e54401, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35876586

ABSTRACT

YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attach a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression and cell proliferation. Similarly, optofYap can be used in zebrafish embryos to modulate target genes. We demonstrate that optoYAP can override a cell's response to substrate stiffness to generate anchorage-independent growth. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.


Subject(s)
Signal Transduction , Zebrafish , Animals , Cell Nucleus/metabolism , Cell Proliferation/physiology , Optogenetics , Zebrafish/genetics
5.
J Cell Sci ; 134(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33495358

ABSTRACT

Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.


Subject(s)
Cytoskeleton , Proteomics , Signal Transduction , src-Family Kinases , Animals , Cells, Cultured , Molecular Dynamics Simulation , Phosphorylation , src Homology Domains , src-Family Kinases/genetics , src-Family Kinases/metabolism
6.
Cell ; 132(5): 807-17, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18329367

ABSTRACT

BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Animals , COS Cells , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/ultrastructure , Chlorocebus aethiops , Cryoelectron Microscopy , Dynamins/metabolism , Fatty Acid-Binding Proteins , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Liposomes/chemistry , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Minor Histocompatibility Antigens , Models, Biological , Models, Molecular , Protein Structure, Tertiary , Transfection
7.
Angiogenesis ; 24(4): 843-860, 2021 11.
Article in English | MEDLINE | ID: mdl-34342749

ABSTRACT

Cerebral cavernous malformation (CCM) is a cerebrovascular disease in which stacks of dilated haemorrhagic capillaries form focally in the brain. Whether and how defective mechanotransduction, cellular mosaicism and inflammation interplay to sustain the progression of CCM disease is unknown. Here, we reveal that CCM1- and CCM2-silenced endothelial cells expanded in vitro enter into senescence-associated secretory phenotype (SASP) that they use to invade the extracellular matrix and attract surrounding wild-type endothelial and immune cells. Further, we demonstrate that this SASP is driven by the cytoskeletal, molecular and transcriptomic disorders provoked by ROCK dysfunctions. By this, we propose that CCM2 and ROCK could be parts of a scaffold controlling senescence, bringing new insights into the emerging field of the control of ageing by cellular mechanics. These in vitro findings reconcile the known dysregulated traits of CCM2-deficient endothelial cells into a unique endothelial fate. Based on these in vitro results, we propose that a SASP could link the increased ROCK-dependent cell contractility in CCM2-deficient endothelial cells with microenvironment remodelling and long-range chemo-attraction of endothelial and immune cells.


Subject(s)
Endothelial Cells , Hemangioma, Cavernous, Central Nervous System , Carrier Proteins/genetics , Endothelial Cells/metabolism , Humans , Mechanotransduction, Cellular , Phenotype , Senescence-Associated Secretory Phenotype , Tumor Microenvironment
8.
Proc Natl Acad Sci U S A ; 115(8): 1925-1930, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29432180

ABSTRACT

Actin polymerization and assembly into stress fibers (SFs) is central to many cellular processes. However, how SFs form in response to the mechanical interaction of cells with their environment is not fully understood. Here we have identified Piezo2 mechanosensitive cationic channel as a transducer of environmental physical cues into mechanobiological responses. Piezo2 is needed by brain metastatic cells from breast cancer (MDA-MB-231-BrM2) to probe their physical environment as they anchor and pull on their surroundings or when confronted with confined migration through narrow pores. Piezo2-mediated Ca2+ influx activates RhoA to control the formation and orientation of SFs and focal adhesions (FAs). A possible mechanism for the Piezo2-mediated activation of RhoA involves the recruitment of the Fyn kinase to the cell leading edge as well as calpain activation. Knockdown of Piezo2 in BrM2 cells alters SFs, FAs, and nuclear translocation of YAP; a phenotype rescued by overexpression of dominant-positive RhoA or its downstream effector, mDia1. Consequently, hallmarks of cancer invasion and metastasis related to RhoA, actin cytoskeleton, and/or force transmission, such as migration, extracellular matrix degradation, and Serpin B2 secretion, were reduced in cells lacking Piezo2.


Subject(s)
Actin Cytoskeleton/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular/physiology , rhoA GTP-Binding Protein/metabolism , Actin Cytoskeleton/genetics , Calcium/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Ion Channels/genetics , rhoA GTP-Binding Protein/genetics
9.
J Cell Sci ; 131(15)2018 08 13.
Article in English | MEDLINE | ID: mdl-30030370

ABSTRACT

Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.


Subject(s)
Carrier Proteins/metabolism , Endothelial Cells/metabolism , KRIT1 Protein/metabolism , rho-Associated Kinases/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Blotting, Western , Cadherins/genetics , Cadherins/metabolism , Carrier Proteins/genetics , Cattle , Endothelial Cells/cytology , Flow Cytometry , Fluorescent Antibody Technique , Human Umbilical Vein Endothelial Cells , Humans , Immunoprecipitation , KRIT1 Protein/genetics , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish , rho-Associated Kinases/genetics
10.
Biol Cell ; 109(3): 127-137, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27990663

ABSTRACT

BACKGROUND INFORMATION: Integrins are key receptors that allow cells to sense and respond to their mechanical environment. Although they bind the same ligand, ß1 and ß3 integrins have distinct and cooperative roles in mechanotransduction. RESULTS: Using traction force microscopy on unconstrained cells, we show that deleting ß3 causes traction forces to increase, whereas the deletion of ß1 integrin results in a strong decrease of contractile forces. Consistently, loss of ß3 integrin also induces an increase in ß1 integrin activation. Using a genetic approach, we identified the phosphorylation of the distal NPXY domain as an essential process for ß3 integrin to be able to modulate traction forces. Loss of ß3 integrins also impacted cell shape and the spatial distribution of traction forces, by causing forces to be generated closer to the cell edge, and the cell shape. CONCLUSIONS: Our results emphasize the role of ß3 integrin in spatial distribution of cellular forces. We speculate that, by modulating its affinity with kindlin, ß3 integrins may be able to locate near the cell edge where it can control ß1 integrin activation and clustering. SIGNIFICANCE: Tensional homeostasis at the single cell level is performed by the ability of ß3 adhesions to negatively regulate the activation degree and spatial localization of ß1 integrins. By combining genetic approaches and new tools to analyze traction distribution and cell morphology on a population of cells we were able to identify the molecular partners involved in cellular forces regulation.


Subject(s)
Carrier Proteins/genetics , Fibroblasts/metabolism , Integrin alphaVbeta3/genetics , Integrin beta1/genetics , Integrin beta3/genetics , Mechanotransduction, Cellular , Amino Acid Sequence , Animals , Biomechanical Phenomena , Carrier Proteins/metabolism , Cell Adhesion , Cell Line , Fibroblasts/ultrastructure , Gene Deletion , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Integrin alphaVbeta3/metabolism , Integrin beta1/metabolism , Integrin beta3/metabolism , Mice , Phosphorylation , Protein Binding , Protein Domains
11.
Development ; 141(10): 2096-107, 2014 May.
Article in English | MEDLINE | ID: mdl-24803656

ABSTRACT

The four related mammalian MEX-3 RNA-binding proteins are evolutionarily conserved molecules for which the in vivo functions have not yet been fully characterized. Here, we report that male mice deficient for the gene encoding Mex3b are subfertile. Seminiferous tubules of Mex3b-deficient mice are obstructed as a consequence of the disrupted phagocytic capacity of somatic Sertoli cells. In addition, both the formation and the integrity of the blood-testis barrier are compromised owing to mislocalization of N-cadherin and connexin 43 at the surface of Sertoli cells. We further establish that Mex3b acts to regulate the cortical level of activated Rap1, a small G protein controlling phagocytosis and cell-cell interaction, through the activation and transport of Rap1GAP. The active form of Rap1 (Rap1-GTP) is abnormally increased at the membrane cortex and chemically restoring Rap1-GTP to physiological levels rescues the phagocytic and adhesion abilities of Sertoli cells. Overall, these findings implicate Mex3b in the spatial organization of the Rap1 pathway that orchestrates Sertoli cell functions.


Subject(s)
RNA-Binding Proteins/physiology , Sertoli Cells/physiology , rap1 GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Embryo, Mammalian , Female , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Mice , Mice, Knockout , RNA-Binding Proteins/genetics , Seminiferous Epithelium/metabolism , Sertoli Cells/metabolism , Signal Transduction , Tissue Distribution/genetics , rap1 GTP-Binding Proteins/genetics
12.
Sci Signal ; 17(833): eabn8003, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652763

ABSTRACT

Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1ß and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.


Subject(s)
CARD Signaling Adaptor Proteins , Inflammasomes , Optogenetics , Pyroptosis , Inflammasomes/metabolism , Optogenetics/methods , Animals , Humans , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Mice , Caspase 1/metabolism , Caspase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
13.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36250940

ABSTRACT

Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables ß3-integrin-mediated force generation independently of ß1 integrin. ß3-integrin-mediated forces were associated with a decrease in ß3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in ß3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.


Subject(s)
Clathrin , Endocytosis , Focal Adhesions , Integrin beta1 , Integrin beta3 , Clathrin/metabolism , Endocytosis/physiology , Integrin beta1/genetics , Mechanotransduction, Cellular , Talin/genetics
14.
J Cell Biol ; 178(6): 1053-64, 2007 Sep 10.
Article in English | MEDLINE | ID: mdl-17846174

ABSTRACT

The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2(-/-) mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions.


Subject(s)
Bone Density/physiology , Focal Adhesion Kinase 2/metabolism , Microtubules/metabolism , Osteoclasts/ultrastructure , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Cells, Cultured , Focal Adhesion Kinase 2/genetics , Mice , Mice, Knockout , Osteoclasts/metabolism , Osteopetrosis/metabolism , Osteopetrosis/pathology , Signal Transduction , rho GTP-Binding Proteins/metabolism
15.
Nat Commun ; 13(1): 7759, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522330

ABSTRACT

Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.


Subject(s)
Lysine , Nuclear Proteins , Acetylation , Nuclear Proteins/metabolism , Lysine/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin
16.
J Cell Biol ; 221(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36205720

ABSTRACT

The spatial organization of cell-surface receptors is fundamental for the coordination of biological responses to physical and biochemical cues of the extracellular matrix. How serine/threonine kinase receptors, ALK3-BMPRII, cooperate with integrins upon BMP2 to drive cell migration is unknown. Whether the dynamics between integrins and BMP receptors intertwine in space and time to guide adhesive processes is yet to be elucidated. We found that BMP2 stimulation controls the spatial organization of BMPRs by segregating ALK3 from BMPRII into ß3 integrin-containing focal adhesions. The selective recruitment of ALK3 to focal adhesions requires ß3 integrin engagement and ALK3 activation. BMP2 controls the partitioning of immobilized ALK3 within and outside focal adhesions according to single-protein tracking and super-resolution imaging. The spatial control of ALK3 in focal adhesions by optogenetics indicates that ALK3 acts as an adhesive receptor by eliciting cell spreading required for cell migration. ALK3 segregation from BMPRII in integrin-based adhesions is a key aspect of the spatio-temporal control of BMPR signaling.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II , Bone Morphogenetic Protein Receptors, Type I , Integrin beta3 , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cell Adhesion , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , Integrin beta3/metabolism , Protein Serine-Threonine Kinases/metabolism
17.
J Cell Sci ; 122(Pt 17): 3037-49, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19692590

ABSTRACT

The invasiveness of cells is correlated with the presence of dynamic actin-rich membrane structures called invadopodia, which are membrane protrusions that are associated with localized polymerization of sub-membrane actin filaments. Similar to focal adhesions and podosomes, invadopodia are cell-matrix adhesion sites. Indeed, invadopodia share several features with podosomes, but whether they are distinct structures is still a matter of debate. Invadopodia are built upon an N-WASP-dependent branched actin network, and the Rho GTPase Cdc42 is involved in inducing invadopodial-membrane protrusion, which is mediated by actin filaments that are organized in bundles to form an actin core. Actin-core formation is thought to be an early step in invadopodium assembly, and the actin core is perpendicular to the extracellular matrix and the plasma membrane; this contrasts with the tangential orientation of actin stress fibers anchored to focal adhesions. In this Commentary, we attempt to summarize recent insights into the actin dynamics of invadopodia and podosomes, and the forces that are transmitted through these invasive structures. Although the mechanisms underlying force-dependent regulation of invadopodia and podosomes are largely unknown compared with those of focal adhesions, these structures do exhibit mechanosensitivity. Actin dynamics and associated forces might be key elements in discriminating between invadopodia, podosomes and focal adhesions. Targeting actin-regulatory molecules that specifically promote invadopodium formation is an attractive strategy against cancer-cell invasion.


Subject(s)
Actin Cytoskeleton/chemistry , Cell Membrane Structures/chemistry , Cells/chemistry , Focal Adhesions/chemistry , Neoplasms/chemistry , Actin Cytoskeleton/metabolism , Animals , Biomechanical Phenomena , Cell Membrane Structures/metabolism , Cells/metabolism , Focal Adhesions/metabolism , Humans , Mechanotransduction, Cellular , Neoplasm Invasiveness , Neoplasms/metabolism , Neoplasms/pathology
18.
Small GTPases ; 12(5-6): 429-439, 2021.
Article in English | MEDLINE | ID: mdl-33487105

ABSTRACT

Cell invasion is associated with numerous patho-physiologic states including cell development and metastatic dissemination. This process couples the activation of cell motility with the capacity to degrade the extracellular matrix, thereby permitting cells to pass through basal membranes. Invasion is sustained by the actions of invadosomes, an ensemble of subcellular structures with high functional homology. Invadosomes are 3D acto-adhesive structures that can also mediate local extracellular matrix degradation through the controlled delivery of proteases. Intracellular RHO GTPases play a central role in the regulation of invadosomes where their complex interplay regulates multiple invadosome functions. This review aims to provide an overview of the synergistic activities of the small GTPases in invadosome biology. This broad-based review also reinforces the importance of the spatiotemporal regulation of small GTPases and the impact of this process on invadosome dynamics.


Subject(s)
Actin Cytoskeleton/physiology , Cell Movement , Extracellular Matrix/metabolism , Monomeric GTP-Binding Proteins/metabolism , Podosomes/physiology , Actin Cytoskeleton/enzymology , Animals , Humans , Podosomes/enzymology
19.
J Cell Biol ; 220(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33399853

ABSTRACT

Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. ß1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with ß1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.


Subject(s)
Podosomes/metabolism , Reactive Oxygen Species/metabolism , TRPV Cation Channels/metabolism , Actins/metabolism , Animals , Calcium/metabolism , Cell Adhesion , Cysteine/metabolism , Dithionitrobenzoic Acid , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Hydrogen Peroxide/metabolism , Integrin beta1/metabolism , MAP Kinase Kinase Kinase 5/metabolism , Mice , Models, Biological , Myosin Type I/metabolism , Protein Transport , RAW 264.7 Cells
20.
Cell Calcium ; 90: 102251, 2020 09.
Article in English | MEDLINE | ID: mdl-32683175

ABSTRACT

Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.


Subject(s)
Calcium Channels/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Calcium/metabolism , Cell Surface Extensions/metabolism , Extracellular Matrix/metabolism , Humans , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL