Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240062

ABSTRACT

The SERBP1 gene is a well-known regulator of SERPINE1 mRNA stability and progesterone signaling. However, the chaperone-like properties of SERBP1 have recently been discovered. The present pilot study investigated whether SERBP1 SNPs are associated with the risk and clinical manifestations of ischemic stroke (IS). DNA samples from 2060 unrelated Russian subjects (869 IS patients and 1191 healthy controls) were genotyped for 5 common SNPs-rs4655707, rs1058074, rs12561767, rs12566098, and rs6702742 SERBP1-using probe-based PCR. The association of SNP rs12566098 with an increased risk of IS (risk allele C; p = 0.001) was observed regardless of gender or physical activity level and was modified by smoking, fruit and vegetable intake, and body mass index. SNP rs1058074 (risk allele C) was associated with an increased risk of IS exclusively in women (p = 0.02), non-smokers (p = 0.003), patients with low physical activity (p = 0.04), patients with low fruit and vegetable consumption (p = 0.04), and BMI ≥25 (p = 0.007). SNPs rs1058074 (p = 0.04), rs12561767 (p = 0.01), rs12566098 (p = 0.02), rs6702742 (p = 0.036), and rs4655707 (p = 0.04) were associated with shortening of activated partial thromboplastin time. Thus, SERBP1 SNPs represent novel genetic markers of IS. Further studies are required to confirm the relationship between SERBP1 polymorphism and IS risk.


Subject(s)
Ischemic Stroke , Stroke , Female , Humans , Genetic Predisposition to Disease , Pilot Projects , Plasminogen Activator Inhibitor 1/metabolism , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Stroke/genetics , Male
2.
J Transl Med ; 20(1): 562, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471396

ABSTRACT

Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.


Subject(s)
Mitochondrial Diseases , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Genetic Therapy , Inheritance Patterns
3.
Transgenic Res ; 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33855640

ABSTRACT

The current coronavirus disease (COVID-19) pandemic remains one of the most serious public health problems. Increasing evidence shows that infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a very complex and multifaceted disease that requires detailed study. Nevertheless, experimental research on COVID-19 remains challenging due to the lack of appropriate animal models. Herein, we report novel humanized mice with Cre-dependent expression of hACE2, the main entry receptor of SARS-CoV-2. These mice carry hACE2 and GFP transgenes floxed by the STOP cassette, allowing them to be used as breeders for the creation of animals with tissue-specific coexpression of hACE2 and GFP. Moreover, inducible expression of hACE2 makes this line biosafe, whereas coexpression with GFP simplifies the detection of transgene-expressing cells. In our study, we tested our line by crossing with Ubi-Cre mice, characterized by tamoxifen-dependent ubiquitous activation of Cre recombinase. After tamoxifen administration, the copy number of the STOP cassette was decreased, and the offspring expressed hACE2 and GFP, confirming the efficiency of our system. We believe that our model can be a useful tool for studying COVID-19 pathogenesis because the selective expression of hACE2 can shed light on the roles of different tissues in SARS-CoV-2-associated complications. Obviously, it can also be used for preclinical trials of antiviral drugs and new vaccines.

4.
J Assist Reprod Genet ; 38(2): 517-529, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33205358

ABSTRACT

PURPOSE: To study whether the application of femtosecond laser pulses for zona pellucida (ZP) drilling of blastocysts at the embryonic or abembryonic poles can promote hatching to start immediately through the hole formed and ensure high hatching rates and embryo viability. METHODS: Mouse blastocyst (E3.5) ZP were microdissected with femtosecond laser pulses (514-nm wavelength, 280-fs pulse duration, 2.5-kHz repetition rate) close to the trophoblast or inner cell mass (ICM). The sizes of the holes formed were in the range of 4.5-8.5 µm. Additional longitudinal incisions (5-7-µm long) on either side of the hole were created to determine whether hatching had started at the correct position. Embryos post-laser-assisted ZP drilling and intact embryos were cultured under standard conditions for 2 days; embryo quality was assessed twice daily. The hatching rates and in vitro and in vivo implantation rates (only for embryos with ZP dissected close to the ICM) were estimated. RESULTS: Femtosecond laser-assisted ZP drilling at the early blastocyst stage facilitated embryo hatching to start at the artificial opening with probability approaching 100%. Despite the artificial opening's small size, no embryo trapping during hatching was observed. Both experimental groups had higher hatching rates than the control groups (93.3-94.7% vs. 83.3-85.7%, respectively). The in vitro implantation rate was comparable with that of the control group (92.3% vs. 95.4%). No statistically significant differences were obtained in the in vivo implantation rates between the experimental and control groups. CONCLUSIONS: Blastocyst-stage femtosecond laser microsurgery of ZP is fast and delicate and enables the hatching process to be initiated in a controlled manner through a relatively small opening, with no embryo trapping.


Subject(s)
Blastocyst/metabolism , Embryo Implantation/genetics , Reproductive Techniques, Assisted , Trophoblasts/metabolism , Zona Pellucida/physiology , Animals , Blastocyst/radiation effects , Embryo Implantation/radiation effects , Embryo, Mammalian/physiology , Embryo, Mammalian/radiation effects , Embryonic Development/genetics , Embryonic Development/radiation effects , Fertilization in Vitro/methods , Lasers , Mice , Trophoblasts/radiation effects , Zona Pellucida/metabolism , Zona Pellucida/radiation effects
5.
Neurochem Res ; 45(5): 1168-1179, 2020 May.
Article in English | MEDLINE | ID: mdl-32157564

ABSTRACT

A number of mutations in a gene encoding RNA-binding protein FUS have been linked to the development of a familial form of amyotrophic lateral sclerosis known as FUS-ALS. C-terminal truncations of FUS by either nonsense or frameshift mutations lead to the development of FUS-ALS with a particularly early onset and fast progression. However, even in patients bearing these highly pathogenic mutations the function of motor neurons is not noticeably compromised for at least a couple of decades, suggesting that until cytoplasmic levels of FUS lacking its C-terminal nuclear localisation signal reaches a critical threshold, motor neurons are able to tolerate its permanent production. In order to identify how the nervous system responds to low levels of pathogenic variants of FUS we produced and characterised a mouse line, L-FUS[1-359], with a low neuronal expression level of a highly aggregation-prone and pathogenic form of C-terminally truncated FUS. In contrast to mice that express substantially higher level of the same FUS variant and develop severe early onset motor neuron pathology, L-FUS[1-359] mice do not develop any clinical or histopathological signs of motor neuron deficiency even at old age. Nevertheless, we detected substantial changes in the spinal cord transcriptome of these mice compared to their wild type littermates. We suggest that at least some of these changes reflect activation of cellular mechanisms compensating for the potentially damaging effect of pathogenic FUS production. Further studies of these mechanism might reveal effective targets for therapy of FUS-ALS and possibly, other forms of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Asymptomatic Diseases , Gene Expression Profiling/methods , RNA-Binding Protein FUS/biosynthesis , Spinal Cord/metabolism , Transcriptome/physiology , Amyotrophic Lateral Sclerosis/genetics , Animals , Gene Expression , Humans , Mice , Mice, Transgenic , RNA-Binding Protein FUS/genetics
6.
Int J Exp Pathol ; 100(2): 64-71, 2019 04.
Article in English | MEDLINE | ID: mdl-31090117

ABSTRACT

Dystonia associated with Huntington's disease, Parkinson's disease or other neurodegenerative diseases substantially affects patients' quality of life and is a major health problem worldwide. The above-mentioned diseases are characterized by neurodegeneration accompanied by motor and cognitive impairment and often have complex aetiology. A frequent feature of these conditions is the abnormal accumulation of protein aggregates within specific neuronal populations in the affected brain regions. Familial neurodegenerative diseases are associated with a number of genetic mutations. Identification of these mutations allowed creation of modern model systems for studying neurodegeneration, either in cultured cells or in model animals. Animal models, especially mouse models, have contributed considerably to improving our understanding of the pathophysiology of neurodegenerative diseases. These models have allowed study of the pathogenic mechanisms and development of new disease-modifying strategies and therapeutic approaches. However, due to the complex nature of these pathologies and the irreversible damage that they cause to the neural tissue, effective therapies against neurodegeneration remain to be elaborated. In this review, we provide an overview of cellular and animal models developed for studying neurodegenerative diseases, including Huntington's disease and dystonia of different origins.


Subject(s)
Disease Models, Animal , Dystonia/etiology , Huntington Disease/etiology , Animal Testing Alternatives/methods , Animals , Cells, Cultured , Dystonia/genetics , Dystonia/therapy , Humans , Huntington Disease/genetics , Huntington Disease/therapy , Mice, Transgenic , Mutation , Rats, Transgenic
7.
Transgenic Res ; 28(3-4): 401-410, 2019 08.
Article in English | MEDLINE | ID: mdl-30919251

ABSTRACT

Expression of the reporter gene in transgenic animals depends on the surrounding chromatin environment. Recent genome-wide studies have shown that, in mammals, the entire genome is transcribed. Transcription through a transgene often has a negative effect on the expression of a reporter gene. Here, we compared the ability of well-studied chicken chromatin insulator HS4 and bidirectional transcription terminators from the human genome to support high-level expression of the firefly luciferase gene (Fluc) under control of the previously characterized goat ß-casein gene promoter. The insertion of HS4 or either of the two transcription terminators upstream of the promoter resulted in tenfold enhancement of Fluc expression in the mammary glands of transgenic mice. These results suggest that transcriptional terminators, similar to the HS4 insulator, can be used to improve the reporter gene expression in transgenic animals.


Subject(s)
Caseins/genetics , Luciferases, Firefly/metabolism , Mammary Glands, Animal/metabolism , Milk/metabolism , Promoter Regions, Genetic , Transcription Termination, Genetic , Transgenes/physiology , Animals , Chickens , Female , Genetic Vectors , Goats , Humans , Insulator Elements , Luciferases, Firefly/genetics , Mice , Mice, Transgenic , Transgenes/genetics
9.
J Biol Chem ; 288(35): 25266-25274, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23867462

ABSTRACT

Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1-359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1-359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5-4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1-359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.


Subject(s)
Amino Acid Sequence , Amyotrophic Lateral Sclerosis/metabolism , Axons/metabolism , Motor Neurons/metabolism , Nuclear Localization Signals , RNA-Binding Protein FUS/biosynthesis , Sequence Deletion , Amino Acid Motifs , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Axons/pathology , Cytoplasm/genetics , Cytoplasm/metabolism , Cytoplasm/pathology , Humans , Mice , Mice, Transgenic , Motor Neurons/pathology , Phenotype , RNA , RNA-Binding Protein FUS/genetics
10.
Brain Behav Immun Health ; 33: 100686, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37767237

ABSTRACT

CNS inflammation, including microglial activation, in response to peripheral infections are known to contribute to the pathology of both familial and sporadic neurodegenerative disease. The relationship between Fused-in-Sarcoma Protein (FUS)-mediated disease in the transgenic FUS[1-359] animals and the systemic inflammatory response have not been explored. Here, we investigated microglial activation, inflammatory gene expression and the behavioural responses to lipopolysaccharide-induced (LPS; 0.1 mg/kg) systemic inflammation in the FUS[1-359] transgenic mice. The pathology of these mice recapitulates the key features of mutant FUS-associated familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here, pre-symptomatic 8-week-old mutant or wild type controls were challenged with LPS or with saline and sucrose intake, novel cage exploration, marble burying and swimming behaviours were analyzed. The level of pro-inflammatory gene expression was also determined, and microglial activation was evaluated. In chronic experiments, to discover whether the LPS challenge would affect the onset of ALS-like paralysis, animals were evaluated for clinical signs from 5 to 7 weeks post-injection. Compared to controls, acutely challenged FUS[1-359]-tg mice exhibited decreased sucrose intake and increased floating behaviours. The FUS[1-359]-tg mice exhibited an increase in immunoreactivity for Iba1-positive cells in the prefrontal cortex and ventral horn of the spinal cord, which was accompanied by increased expression of interleukin-1ß, tumour necrosis factor, cyclooxygenase-(COX)-1 and COX-2. However, the single LPS challenge did not alter the time to development of paralysis in the FUS[1-359]-tg mice. Thus, while the acute inflammatory response was enhanced in the FUS mutant animals, it did not have a lasting impact on disease progression.

11.
Mol Neurobiol ; 60(6): 3147-3157, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36802322

ABSTRACT

Alterations in function of hypoxanthine guanine phosphoribosyl transferase (HPRT), one of the major enzymes involved in purine nucleotide exchange, lead to overproduction of uric acid and produce various symptoms of Lesch-Nyhan syndrome (LNS). One of the hallmarks of LNS is maximal expression of HPRT in the central nervous system with the highest activity of this enzyme in the midbrain and basal ganglia. However, the nature of neurological symptoms has yet to be clarified in details. Here, we studied whether HPRT1 deficiency changes mitochondrial energy metabolism and redox balance in murine neurons from the cortex and midbrain. We found that HPRT1 deficiency inhibits complex I-dependent mitochondrial respiration resulting in increased levels of mitochondrial NADH, reduction of the mitochondrial membrane potential, and increased rate of reactive oxygen species (ROS) production in mitochondria and cytosol. However, increased ROS production did not induce oxidative stress and did not decrease the level of endogenous antioxidant glutathione (GSH). Thus, disruption of mitochondrial energy metabolism but not oxidative stress could play a role of potential trigger of brain pathology in LNS.


Subject(s)
Lesch-Nyhan Syndrome , Mice , Animals , Lesch-Nyhan Syndrome/metabolism , Lesch-Nyhan Syndrome/pathology , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Reactive Oxygen Species , Brain/metabolism , Energy Metabolism
12.
Mol Ther Methods Clin Dev ; 30: 161-180, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37457303

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.

13.
IBRO Neurosci Rep ; 14: 453-461, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37252629

ABSTRACT

Background: Ischemic stroke (IS) is one of the most serious cardiovascular events associated with high risk of death or disability. The growing body of evidence highlights molecular chaperones as especially important players in the pathogenesis of the disease. Since six small proteins called "Hero" have been recently identified as a novel class of chaperones we aimed to evaluate whether SNP rs4644832 in SERF2 gene encoding the member of Hero-proteins, is associated with the risk of IS. Methods: A total of 1929 unrelated Russians (861 patients with IS and 1068 healthy individuals) from Central Russia were recruited into the study. Genotyping was done using a probe-based PCR approach. Statistical analysis was carried out in the whole group and stratified by age, gender and smoking status. Results: Analysis of the link between rs4644832 SERF2 and IS showed that G allele is the risk factor of IS only in females (OR=1.29, 95%CI 1.02-1.64, Padj=0.035). In addition, the analysis of associations of rs4644832 SERF2 and IS depending on the smoking status revealed that this genetic variant is associated with an increased risk of IS exclusively in non-smoking individuals (OR=1.26, 95%CI 1.01-1.56, P = 0.041). Discussion: Sex- and smoking interactions between rs4644832 polymorphism and IS may be related to the impact of tobacco components metabolism and sex hormones on SERF2 expression. Conclusion: The present study reveals the novel genetic association between rs4644832 polymorphism and the risk of IS suggesting that SERF2, the part of the protein quality control system, contributes to the pathogenesis of the disease.

14.
Genes (Basel) ; 14(6)2023 05 27.
Article in English | MEDLINE | ID: mdl-37372351

ABSTRACT

HSPA8 is involved in many stroke-associated cellular processes, playing a pivotal role in the protein quality control system. Here we report the results of the pilot study aimed at determining whether HSPA8 SNPs are linked to the risk of ischemic stroke (IS). DNA samples from 2139 Russians (888 IS patients and 1251 healthy controls) were genotyped for tagSNPs (rs1461496, rs10892958, and rs1136141) in the HSPA8 gene using probe-based PCR. SNP rs10892958 of HSPA8 was associated with an increased risk (risk allele G) of IS in smokers (OR = 1.37; 95% CI = 1.07-1.77; p = 0.01) and patients with low fruit and vegetable consumption (OR = 1.36; 95% CI = 1.14-1.63; p = 0.002). SNP rs1136141 of HSPA8 was also associated with an increased risk of IS (risk allele A) exclusively in smokers (OR = 1.68; 95% CI = 1.23-2.28; p = 0.0007) and in patients with a low fruit and vegetable intake (OR = 1.29; 95% CI = 1.05-1.60; p = 0.04). Sex-stratified analysis revealed an association of rs10892958 HSPA8 with an increased risk of IS in males (risk allele G; OR = 1.30; 95% CI = 1.05-1.61; p = 0.01). Thus, SNPs rs10892958 and rs1136141 in the HSPA8 gene represent novel genetic markers of IS.


Subject(s)
Heat-Shock Proteins , Ischemic Stroke , Male , Humans , Heat-Shock Proteins/genetics , Pilot Projects , HSC70 Heat-Shock Proteins/genetics , Genotype
15.
Front Genome Ed ; 5: 1034720, 2023.
Article in English | MEDLINE | ID: mdl-37077890

ABSTRACT

The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the "humanized" fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts.

16.
FEBS J ; 289(16): 5021-5029, 2022 08.
Article in English | MEDLINE | ID: mdl-35175687

ABSTRACT

Neurokinin-1 receptor (NK1r) antagonists have been shown to suppress operant self-administration of alcohol, voluntary alcohol consumption and stress-induced reinstatement of alcohol-seeking behaviour. Considering the long half-life and anxiolytic-like properties of NK1r antagonist rolapitant, we expected that it may be an effective option for reducing anxiety and alcohol motivation during early withdrawal. Voluntary alcohol intake (two-bottles paradigm) was recorded in male Wistar rats during the three periods: 24 days (basal level), 6-day period when rats received 5 mg·kg-1 rolapitant or vehicle and 12-h period after repeated withdrawal episodes (alcohol cessation for 36 h). We found that upon intraperitoneal (i.p.) administration, rolapitant rapidly penetrated into specific rat brain regions - amygdala, hypothalamus and neocortex - implicated in the control of anxiety and reward. Rolapitant did not affect basal voluntary alcohol intake, but significantly suppressed anxiety-like behaviour and alcohol consumption following withdrawal episodes. Our findings suggest that rolapitant should be further investigated as a novel treatment option for relapse prevention in alcohol-dependent patients.


Subject(s)
Alcohol Drinking , Neurokinin-1 Receptor Antagonists , Alcohol Drinking/adverse effects , Alcohol Drinking/drug therapy , Animals , Anxiety/drug therapy , Ethanol , Male , Neurokinin-1 Receptor Antagonists/pharmacology , Rats , Rats, Wistar , Spiro Compounds
17.
Biomark Insights ; 17: 11772719221095676, 2022.
Article in English | MEDLINE | ID: mdl-35492378

ABSTRACT

Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1ß, TGF-ß, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-ß signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1ß, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-ß noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1ß, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-ß-binding protein (LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.

18.
Theriogenology ; 193: 77-86, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156427

ABSTRACT

Adeno-associated viruses (AAV) are widely used in the field of genetically modified organism production. In this work, transduction of bovine embryos by AAV was selected as a potential approach to perform genetic modifications: we have used recombinant AAV to produce GFP-positive bovine embryos. Five different AAV serotypes were used to evaluate their ability to deliver genetic material into the bovine embryos. AAV9 serotype demonstrated minimal effectiveness (38,10%) as the genetic material transfer tool. Four other serotypes of AAVs (AAV1, AAV2, AAV6 and AAV-DJ) showed very close transduction efficiency (52,94-58,33%). CD209 is a C-type lectin receptor which is presented on the surface of macrophages and dendritic cells. CD209 recognizes a broad range of pathogens in a rather nonspecific manner. Production of CD209 knock-out is relevant for better understanding of infection mechanisms. Potentially, production of such knock-out may enable animals to become resistant to various infections. We have analyzed DNA samples from 22 blastocysts obtained after in vitro culture of zygotes subjected to recombinant AAV action. We have detected that 3 of 22 analyzed blastocysts contained mosaic CD209 frameshifts. Therefore, we have demonstrated proof of principle that application of AAV as a genome editing tool is an effective method for obtaining genetically modified cattle embryos.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Cattle , Dependovirus/genetics , Gene Editing/veterinary , Lectins, C-Type/genetics
19.
Eye Brain ; 13: 131-146, 2021.
Article in English | MEDLINE | ID: mdl-34012311

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting in a gradual loss of motor neuron function. Although ophthalmic complaints are not presently considered a classic symptom of ALS, retinal changes such as thinning, axonal degeneration and inclusion bodies have been found in many patients. Retinal abnormalities observed in postmortem human tissues and animal models are similar to spinal cord changes in ALS. These findings are not dramatically unexpected because retina shares an ontogenetic relationship with the brain, and many genes are associated both with neurodegeneration and retinal diseases. Experimental studies have demonstrated that ALS affects many "vulnerable points" of the retina. Aggregate deposition, impaired nuclear protein import, endoplasmic reticulum stress, glutamate excitotoxicity, vascular regression, and mitochondrial dysfunction are factors suspected as being the main cause of motor neuron damage in ALS. Herein, we show that all of these pathways can affect retinal cells in the same way as motor neurons. Furthermore, we suppose that understanding the patterns of neuro-ophthalmic interaction in ALS can help in the diagnosis and treatment of this disease.

20.
Front Mol Biosci ; 8: 821506, 2021.
Article in English | MEDLINE | ID: mdl-35118120

ABSTRACT

The novel coronavirus disease COVID-19 has become one of the most socially significant infections. One of the main models for COVID-19 pathogenesis study and anti-COVID-19 drug development is laboratory animals sensitive to the virus. Herein, we report SARS-CoV-2 infection in novel transgenic mice conditionally expressing human ACE2 (hACE2), with a focus on viral distribution after intranasal inoculation. Transgenic mice carrying hACE2 under the floxed STOP cassette [(hACE2-LoxP(STOP)] were mated with two types of Cre-ERT2 strains (UBC-Cre and Rosa-Cre). The resulting offspring with temporal control of transgene expression were treated with tamoxifen to induce the removal of the floxed STOP cassette, which prevented hACE2 expression. Before and after intranasal inoculation, the mice were weighed and clinically examined. On Days 5 and 10, the mice were sacrificed for isolation of internal organs and the further assessment of SARS-CoV-2 distribution. Intranasal SARS-CoV-2 inoculation in hACE2-LoxP(STOP)×UBC-Cre offspring resulted in weight loss and death in 6 out of 8 mice. Immunostaining and focus formation assays revealed the most significant viral load in the lung, brain, heart and intestine samples. In contrast, hACE2-LoxP(STOP) × Rosa-Cre offspring easily tolerated the infection, and SARS-CoV-2 was detected only in the brain and lungs, whereas other studied tissues had null or negligible levels of the virus. Histological examination revealed severe alterations in the lungs, and mild changes were observed in the brain tissues. Notably, no changes were observed in mice without tamoxifen treatment. Thus, this novel murine model with the Cre-dependent activation of hACE2 provides a useful and safe tool for COVID-19 studies.

SELECTION OF CITATIONS
SEARCH DETAIL