Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Pharmacol Res ; 141: 384-391, 2019 03.
Article in English | MEDLINE | ID: mdl-30648615

ABSTRACT

The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We previously reported that genetic deletion or pharmacological blockade of D3R increases GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by influencing the inhibitory transmission of MSNs. We performed in vivo and ex vivo experiments in D3R knockout (D3R -/-) mice and wild type littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 activity. At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R-/-; other relevant GABAA subunits were not changed. In situ hybridization and qPCR confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but increased it in D3R-/-; this was confirmed by intra-NAc administration of Ro 15-4513 and furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of D3R-/-, but not in D3R+/+. We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits voluntary alcohol intake by increasing GABA inhibition in the NAc.


Subject(s)
Binge Drinking/genetics , GABAergic Neurons/pathology , Receptors, Dopamine D3/genetics , Receptors, GABA-A/genetics , Animals , Binge Drinking/pathology , GABAergic Neurons/metabolism , Gene Expression Regulation , Male , Mice , Mice, Knockout , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology , Protein Subunits/genetics , RNA, Messenger/genetics
2.
Biochem Pharmacol ; 177: 114004, 2020 07.
Article in English | MEDLINE | ID: mdl-32360362

ABSTRACT

Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques. Peripubertal treatment with the non-euphoric phytocannabinoid cannabidiol (30 mg/kg) from postnatal day (PND) 19 to PND 39 was able to reverse in MAM exposed rats: i) the up-regulation of the dopamine D3 receptor mRNA (only partially prevented by haloperidol 0.6 mg/kg/day); and ii) the regional blood flow changes in MAM exposed rats. Molecular modelling predicted that cannabidiol could bind preferentially to dopamine D3 receptor, where it may act as a partial agonist according to conformation of ionic-lock, which is highly conserved in GPCRs. In summary, our results demonstrate that the mRNA expression of both dopamine D2 and D3 receptors is altered in the MAM model; however only the transcript levels of D3 are affected by cannabidiol treatment, likely suggesting that this gene might not only contribute to the schizophrenia symptoms but also represent an unexplored target for the antipsychotic activity of cannabidiol.


Subject(s)
Brain/drug effects , Cannabidiol/pharmacology , Receptors, Dopamine D3/genetics , Schizophrenia/drug therapy , Animals , Antipsychotic Agents/pharmacology , Brain/diagnostic imaging , Cannabidiol/chemistry , Cerebrovascular Circulation , Disease Models, Animal , Female , Gene Expression Regulation , Haloperidol/chemistry , Haloperidol/pharmacology , Magnetic Resonance Imaging , Male , Methylazoxymethanol Acetate/toxicity , Models, Molecular , Molecular Dynamics Simulation , Pregnancy , Prenatal Exposure Delayed Effects , Puberty , Rats, Sprague-Dawley , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/chemistry , Receptors, Dopamine D3/metabolism , Schizophrenia/chemically induced , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
3.
Neuropharmacology ; 146: 212-221, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30496751

ABSTRACT

In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At the molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression, which might be due to reduction in DNA methylation at the gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both the schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult.


Subject(s)
Cannabidiol/pharmacology , Methylazoxymethanol Acetate/pharmacology , Prenatal Exposure Delayed Effects/drug therapy , Schizophrenia/drug therapy , Amides , Animals , Arachidonic Acids/metabolism , Disease Models, Animal , Endocannabinoids/metabolism , Ethanolamines/metabolism , Female , Glycerides/metabolism , Hippocampus/metabolism , Interpersonal Relations , Male , Motor Activity/drug effects , Oleic Acids/metabolism , Palmitic Acids/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/metabolism , Prefrontal Cortex/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Puberty , Pyrazoles/pharmacology , RNA, Messenger/metabolism , Rats , Receptor, Cannabinoid, CB1/metabolism , Recognition, Psychology/drug effects , Schizophrenia/chemically induced , Schizophrenia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL