ABSTRACT
OBJECTIVES: To investigate image-guided volumetric hyperthermia strategies using the ExAblate Body MR-guided focused ultrasound ablation system, involving mechanical transducer movement and sector-vortex beamforming. MATERIALS AND METHODS: Acoustic and thermal simulations were performed to investigate volumetric hyperthermia using mechanical transducer movement combined with sector-vortex beamforming, specifically for the ExAblate Body transducer. The system control in the ExAblate Body system was modified to achieve fast transducer movement and MR thermometry-based hyperthermia control, mechanical transducer movements and electronic sector-vortex beamforming were combined to optimize hyperthermia delivery. The experimental validation was performed using a tissue-mimicking phantom. RESULTS: The developed simulation framework allowed for a parametric study with varying numbers of heating spots, sonication durations, and transducer movement times to evaluate the hyperthermia characteristics for mechanical transducer movement and sector-vortex beamforming. Hyperthermic patterns involving 2-4 sequential focal spots were analyzed. To demonstrate the feasibility of volumetric hyperthermia in the system, a tissue-mimicking phantom was sonicated with two distinct spots through mechanical transducer movement and sector-vortex beamforming. During hyperthermia, the average values of Tmax, T10, Tavg, T90, and Tmin over 200 s were measured within a circular ROI with a diameter of 10 pixels. These values were found to be 8.6, 7.9, 6.6, 5.2, and 4.5 °C, respectively, compared to the baseline temperature. CONCLUSIONS: This study demonstrated the volumetric hyperthermia capabilities of the ExAblate Body system. The simulation framework developed in this study allowed for the evaluation of hyperthermia characteristics that could be implemented with the ExAblate MRgFUS system.
Subject(s)
Hyperthermia, Induced , Magnetic Resonance Imaging , Humans , Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , High-Intensity Focused Ultrasound Ablation/methods , Phantoms, ImagingABSTRACT
PURPOSE: To investigate the design of an endoluminal deployable ultrasound applicator for delivering volumetric hyperthermia to deep tissue sites as a possible adjunct to radiation and chemotherapy. METHOD: This study considers an ultrasound applicator consisting of two tubular transducers situated at the end of a catheter assembly, encased within a distensible conical shaped balloon-based reflector that redirects acoustic energy distally into the tissue. The applicator assembly can be inserted endoluminally or laparoscopically in a compact form and expanded after delivery to the target site. Comprehensive acoustic and biothermal simulations and parametric studies were employed in generalized 3D and patient-specific pancreatic head and body tumor models to characterize the acoustic performance and evaluate heating capabilities of the applicator by investigating the device at a range of operating frequencies, tissue acoustic and thermal properties, transducer configurations, power modulation, applicator positioning, and by analyzing the resultant 40, 41, and 43 °C isothermal volumes and penetration depth of the heating volume. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. RESULTS: Parametric studies demonstrated the frequency selection to control volume and depth of therapeutic heating from 62 to 22 cm3 and 4 to 2.6 cm as frequency ranges from 1 MHz to 4.7 MHz, respectively. Width of the heating profile tracks closely with the aperture. Water cooling within the reflector balloon was effective in controlling temperature to 37 °C maximum within the luminal wall. Patient-specific studies indicated that applicators with extended OD in the range of 3.6-6.2 cm with 0.5-1 cm long and 1 cm OD transducers can heat volumes of 1.1-7 cm3, 3-26 cm3, and 3.3-37.4 cm3 of pancreatic body and head tumors above 43, 41, and 40 °C, respectively. CONCLUSION: In silico studies demonstrated the feasibility of combining endoluminal ultrasound with an integrated expandable balloon reflector for delivering volumetric hyperthermia in regions adjacent to body lumens and cavities.
Subject(s)
Hyperthermia, Induced , Ultrasonic Therapy , Equipment Design , Humans , Hyperthermia , Transducers , UltrasonographyABSTRACT
PURPOSE: The ExAblate body MRgFUS system requires advanced beamforming strategies for volumetric hyperthermia. This study aims to develop and evaluate electronic beam steering, multi-focal patterns, and sector vortex beamforming approaches in conjunction with partial array activation using an acoustic and biothermal simulation framework along with phantom experiments. METHODS: The simulation framework was developed to calculate the 3D acoustic intensity and temperature distribution resulting from various beamforming and scanning strategies. A treatment cell electronically sweeping a single focus was implemented and evaluated in phantom experiments. The acoustic and thermal focal size of vortex beam propagation was quantified according to the vortex modes, number of active array elements, and focal depth. RESULTS: Turning off a percentage of the outer array to increase the f-number increased the focal size with a decrease in focal gain. 60% active elements allowed generating a sonication cell with an off-axis of 10 mm. The vortex mode number 4 with 60% active elements resulted in a larger heating volume than using the full array. Volumetric hyperthermia in the phantom was evaluated with the vortex mode 4 and respectively performed with 100% and 80% active elements. MR thermometry demonstrated that the volumes were found to be 18.8 and 29.7 cm3, respectively, with 80% array activation producing 1.58 times larger volume than the full array. CONCLUSIONS: This study demonstrated that both electronic beam steering and sector vortex beamforming approaches in conjunction with partial array activation could generate large volume heating for HT delivery using the ExAblate body array.
Subject(s)
High-Intensity Focused Ultrasound Ablation , Thermometry , Magnetic Resonance Imaging , Phantoms, Imaging , SonicationABSTRACT
OBJECTIVE: To develop a thermochromic tissue-mimicking phantom (TTMP) with an embedded 3D-printed bone mimic of the lumbar spine to evaluate MRgFUS ablation of the facet joint and medial branch nerve. MATERIALS AND METHODS: Multiple 3D-printed materials were selected and characterized by measurements of speed of sound and linear acoustic attenuation coefficient using a through-transmission technique. A 3D model of the lumbar spine was segmented from a de-identified CT scan, and 3D printed. The 3D-printed spine was embedded within a TTMP with thermochromic ink color change setpoint at 60 °C. Multiple high energy sonications were targeted to the facet joints and medial branch nerve anatomical location using an ExAblate MRgFUS system connected to a 3T MR scanner. The phantom was dissected to assess sonication targets and the surrounding structures for color change as compared to the expected region of ablation on MR-thermometry. RESULTS: The measured sound attenuation coefficient and speed of sound of gypsum was 240 Np/m-MHz and 2471 m/s, which is the closest to published values for cortical bone. Following sonication, dissection of the TTMP revealed good concordance between the regions of color change within the phantom and expected areas of ablation on MR-thermometry. No heat deposition was observed in critical areas, including the spinal canal and nerve roots from either color change or MRI. CONCLUSION: Ablated regions in the TTMP correlated well with expected ablations based on MR-thermometry. These findings demonstrate the utility of an anatomic spine phantom in evaluating MRgFUS sonication for facet joint and medial branch nerve ablations.
Subject(s)
High-Intensity Focused Ultrasound Ablation , Thermometry , Zygapophyseal Joint , Magnetic Resonance Imaging , Phantoms, Imaging , UltrasonographyABSTRACT
The goal of the study was to establish early hyperpolarized (HP) 13 C MRI metabolic and perfusion changes that predict effective high-intensity focused ultrasound (HIFU) ablation and lead to improved adjuvant treatment of partially treated regions. To accomplish this a combined HP dual-agent (13 C pyruvate and 13 C urea) 13 C MRI/multiparametric 1 H MRI approach was used to measure prostate cancer metabolism and perfusion 3-4 h, 1 d, and 5 d after exposure to ablative and sub-lethal doses of HIFU within adenocarcinoma of mouse prostate tumors using a focused ultrasound applicator designed for murine studies. Pathologic and immunohistochemical analysis of the ablated tumor demonstrated fragmented, non-viable cells and vasculature consistent with coagulative necrosis, and a mixture of destroyed tissue and highly proliferative, poorly differentiated tumor cells in tumor tissues exposed to sub-lethal heat doses in the ablative margin. In ablated regions, the intensity of HP 13 C lactate or HP 13 C urea and dynamic contrast-enhanced (DCE) MRI area under the curve images were reduced to the level of background noise by 3-4 h after treatment with no recovery by the 5 d time point in either case. In the tissues that received sub-lethal heat dose, there was a significant 60% ± 12.4% drop in HP 13 C lactate production and a significant 30 ± 13.7% drop in urea perfusion 3-4 h after treatment, followed by recovery to baseline by 5 d after treatment. DCE MRI Ktrans showed a similar trend to HP 13 C urea, demonstrating a complete loss of perfusion with no recovery in the ablated region, while having a 40%-50% decrease 3-4 h after treatment followed by recovery to baseline values by 5 d in the margin region. The utility of the HP 13 C MR measures of perfusion and metabolism in optimizing focal HIFU, either alone or in combination with adjuvant therapy, deserves further testing in future studies.
Subject(s)
Carbon Isotopes/chemistry , High-Intensity Focused Ultrasound Ablation , Perfusion , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Acoustics , Animals , Contrast Media/chemistry , Ki-67 Antigen/metabolism , Lactates/metabolism , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Prostatic Neoplasms/pathology , Pyruvic Acid/metabolismABSTRACT
Objective: This study investigates the feasibility of endobronchial ultrasound applicators for thermal ablation of lung tumors using acoustic and biothermal simulations.Methods: Endobronchial ultrasound applicators with planar (10 mm width) or tubular transducers (6 mm outer diameter (OD)) encapsulated by expandable coupling balloons (10 mm OD) are considered for treating tumors from within major airways; smaller catheter-based applicators with tubular transducers (1.7-4 mm OD) and coupling balloons (2.5-5 mm OD) are considered within deep lung airways. Parametric studies were applied to evaluate transducer configurations, tumor size and location, effects of acoustic reflection and absorption at tumor-lung parenchyma interfaces, and the utility of lung flooding for enhancing accessibility. Patient-specific anatomical lung models, with various geometries and locations of tumors, were developed for further evaluation of device performance and treatment strategies. Temperature and thermal dose distributions were calculated and reported.Results: Large endobronchial applicators with planar or tubular transducers (3-7 MHz, 5 min) can thermally ablate tumors attached to major bronchi at up to 3 cm depth, where reflection and attenuation of normal lung localize tumor heating; with lung flooding, endobronchial applicators can ablate â¼2 cm diameter tumors with up to â¼2 cm separation from the bronchial wall, without significant heating of intervening tissue. Smaller catheter-based tubular applicators can ablate tumors up to 2-3 cm in diameter from deep lung airways (5-9 MHz, 5 min).Conclusion: Simulations demonstrate the feasibility of endobronchial ultrasound applicators to deliver thermal coagulation of 2-3 cm diameter tumors adjacent to or accessible from major and deep lung airways.
Subject(s)
Extracorporeal Shockwave Therapy/methods , Lung Neoplasms/drug therapy , Humans , Lung Neoplasms/pathologyABSTRACT
BACKGROUND: Stress urinary incontinence (SUI) is prevalent in adult women, attributed to weakened endopelvic supporting tissues, and typically treated using drugs and invasive surgical procedures. The objective of this in silico study is to explore transurethral high-intensity ultrasound for delivery of precise thermal therapy to the endopelvic tissues adjacent to the mid-urethra, to induce thermal remodeling as a potential minimally invasive treatment alternative. METHODS: 3D acoustic (Rayleigh-Sommerfeld) and biothermal (Pennes bioheat) models of the ultrasound applicator and surrounding tissues were devised. Parametric studies over transducer configuration [frequency, radius-of-curvature (ROC)] and treatment settings (power, duration) were performed, and select cases on patient-specific models were used for further evaluation. Transient temperature and thermal dose distributions were calculated, and temperature and dose metrics reported. RESULTS: Configurations using a 5-MHz curvilinear transducer (3.5 × 10 mm, 28 mm ROC) with single 90 s sonication can create heated zones with 11 mm penetration (>50 °C) while sparing the inner 1.8 mm (<45 °C) radial depth of the urethral mucosa. Sequential and discrete applicator rotations can sweep out bilateral coagulation volumes (1.4 W power, 15° rotations, 600 s total time), produce large volumetric (1124 mm³ above 60 EM43 °C) and wide angular (â¼50.5° per lateral sweep) coverage, with up to 15.6 mm thermal penetration and at least 1.6 mm radial urethral protection (<5 EM43 °C). CONCLUSION: Transurethral applicators with curvilinear ultrasound transducers can deliver spatially selective temperature elevations to lateral mid-urethral targets as a possible means to tighten the endopelvic fascia and adjacent tissues.
Subject(s)
Patient-Specific Modeling , Ultrasonic Therapy , Urinary Incontinence/therapy , Female , Humans , UrethraABSTRACT
OBJECTIVE Minimally invasive procedures may allow surgeons to avoid conventional open surgical procedures for certain neurological disorders. This paper describes the iterative process for development of a catheter-based ultrasound thermal therapy applicator. METHODS Using an ultrasound applicator with an array of longitudinally stacked and angularly sectored tubular transducers within a catheter, the authors conducted experimental studies in porcine liver, in vivo and ex vivo, in order to characterize the device performance and lesion patterns. In addition, they applied the technique in a rodent model of Parkinson's disease to investigate the feasibility of its application in brain. RESULTS Thermal lesions with multiple shapes and sizes were readily achieved in porcine liver. The feasibility of catheter-based focused ultrasound in the treatment of brain conditions was demonstrated in a rodent model of Parkinson's disease. CONCLUSIONS The authors show proof of principle of a catheter-based ultrasound system that can create lesions with concurrent thermode-based measurements.
Subject(s)
Brain/diagnostic imaging , Catheterization/methods , Minimally Invasive Surgical Procedures/methods , Parkinsonian Disorders/diagnostic imaging , Ultrasonography, Interventional/methods , Animals , Brain/surgery , Parkinsonian Disorders/surgery , Rats , SwineABSTRACT
Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.
Subject(s)
Clinical Trials as Topic/instrumentation , Clinical Trials as Topic/standards , Hyperthermia, Induced/instrumentation , Hyperthermia, Induced/standards , Practice Guidelines as Topic , Quality Assurance, Health Care/standards , Equipment Design , Equipment Failure Analysis/methods , Equipment Failure Analysis/standards , Germany , Infrared Rays , Internationality , MicrowavesABSTRACT
Quality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques. This information helps to select the appropriate heating technique for the specific tumour location and size, and appropriate settings of the water bolus and thermometry. Finally, requirements of staff training and documentation are provided. The guidelines in this document focus on the clinical application and are complemented with a second, more technical quality assurance document providing instructions and procedure to determine essential parameters that describe heating properties of the applicator for superficial hyperthermia. Both sets of guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.
ABSTRACT
PURPOSE: The aim of this study is to investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumours using 3D acoustic and biothermal finite element models. MATERIALS AND METHODS: Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1-5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumour models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (> 240 EM(43 °C)) and moderate hyperthermia (40-45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70-80 °C for ablation and 45 °C for hyperthermia in target regions. RESULTS: Parametric studies indicated that 1-3 MHz planar transducers are the most suitable for volumetric ablation, producing 5-8 cm(3) lesion volumes for a stationary 5-min sonication. Curvilinear-focused geometries produce more localised ablation to 20-45 mm depth from the GI tract and enhance thermal sparing (T(max) < 42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1-92.9% of head/body tumour volumes (4.3-37.2 cm(3)) with dose < 15 EM(43 °C) in the luminal wall for 18-48 min treatment durations, using 1-3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm(3) and 15 cm(3) of tissue, respectively, between 40-45 °C for a single applicator placement. CONCLUSIONS: Modelling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumour tissue.
Subject(s)
Models, Theoretical , Pancreatic Neoplasms/therapy , Patient-Specific Modeling , Ultrasonic Therapy , Humans , TransducersABSTRACT
PURPOSE: To demonstrate the feasibility of using ultrashort echo-time MRI to quantify T1 changes in cortical bone due to heating. METHODS: Variable flip-angle T1 mapping combined with 3D ultrashort echo-time imaging was used to measure T1 in cortical bone. A calibration experiment was performed to detect T1 changes with temperature in ex vivo cortical bone samples from a bovine femur. Ultrasound heating experiments were performed using an interstitial applicator in ex vivo bovine femur specimens, and heat-induced T1 changes were quantified. RESULTS: The calibration experiment demonstrated that T1 increases with temperature in cortical bone. We observed a linear relationship between temperature and T1 with a linear coefficient between 0.67 and 0.84 ms/°C over a range of 25-70°C. The ultrasound heating experiments showed increased T1 changes in the heated regions, and the relationship between the temperature changes and T1 changes was similar to that of the calibration. CONCLUSION: We demonstrated a temperature dependence of T1 in ex vivo cortical bone using a variable flip-angle ultrashort echo-time T1 mapping method.
Subject(s)
Body Temperature/physiology , Femur/physiology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Thermography/methods , Animals , Body Temperature/radiation effects , Cattle , Feasibility Studies , Femur/radiation effects , Heating/methods , High-Energy Shock Waves , In Vitro Techniques , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
Catheter-based ultrasound (CBUS) is applied to deliver minimally invasive thermal therapy to solid cancer tumours, benign tissue growth, vascular disease, and tissue remodelling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. We present a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications. CBUS devices have been categorised into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site-specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given to ablation studies that incorporate image guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of the development cycle from preliminary simulation-based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery.
Subject(s)
Catheter Ablation/instrumentation , Hyperthermia, Induced/instrumentation , Ultrasonic Therapy/instrumentation , HumansABSTRACT
PURPOSE: Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS: 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS: Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS: Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.
Subject(s)
Hyperthermia, Induced/methods , Spinal Neoplasms/therapy , Ultrasonic Therapy/methods , Acoustics , Finite Element Analysis , Humans , Models, TheoreticalABSTRACT
Like other technically sophisticated medical endeavours, a hyperthermia clinic relies on skilled staffing. Physicians, physicists and technologists perform multiple tasks to ensure properly functioning equipment, appropriate patient selection, and to plan and administer this treatment. This paper reviews the competencies and tasks that are used in a hyperthermia clinic.
Subject(s)
Ambulatory Care Facilities , Hyperthermia, Induced , Humans , Hyperthermia, Induced/instrumentation , Medical Staff , Monitoring, Physiologic , Physicians , Thermometry/instrumentation , WorkforceABSTRACT
PURPOSE: To develop patient-specific 3D models using Finite-Difference Time-Domain (FDTD) simulations and pre-treatment planning tools for the selective thermal ablation of prostate cancer with interstitial ultrasound. This involves the integration with a FDA 510(k) cleared catheter-based ultrasound interstitial applicators and delivery system. METHODS: A 3D generalized "prostate" model was developed to generate temperature and thermal dose profiles for different applicator operating parameters and anticipated perfusion ranges. A priori planning, based upon these pre-calculated lethal thermal dose and iso-temperature clouds, was devised for iterative device selection and positioning. Full 3D patient-specific anatomic modeling of actual placement of single or multiple applicators to conformally ablate target regions can be applied, with optional integrated pilot-point temperature-based feedback control and urethral/rectum cooling. These numerical models were verified against previously reported ex-vivo experimental results obtained in soft tissues. RESULTS: For generic prostate tissue, 360 treatment schemes were simulated based on the number of transducers (1-4), applied power (8-20 W/cm2), heating time (5, 7.5, 10 min), and blood perfusion (0, 2.5, 5 kg/m3/s) using forward treatment modelling. Selectable ablation zones ranged from 0.8-3.0 cm and 0.8-5.3 cm in radial and axial directions, respectively. 3D patient-specific thermal treatment modeling for 12 Cases of T2/T3 prostate disease demonstrate applicability of workflow and technique for focal, quadrant and hemi-gland ablation. A temperature threshold (e.g., Tthres = 52 °C) at the treatment margin, emulating placement of invasive temperature sensing, can be applied for pilot-point feedback control to improve conformality of thermal ablation. Also, binary power control (e.g., Treg = 45 °C) can be applied which will regulate the applied power level to maintain the surrounding temperature to a safe limit or maximum threshold until the set heating time. CONCLUSIONS: Prostate-specific simulations of interstitial ultrasound applicators were used to generate a library of thermal-dose distributions to visually optimize and set applicator positioning and directivity during a priori treatment planning pre-procedure. Anatomic 3D forward treatment planning in patient-specific models, along with optional temperature-based feedback control, demonstrated single and multi-applicator implant strategies to effectively ablate focal disease while affording protection of normal tissues.
ABSTRACT
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in device design and optimisation, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modelling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimisation of inverse treatment plans are presented.
Subject(s)
Hyperthermia, Induced , Models, Biological , Equipment Design , Humans , Hyperthermia, Induced/instrumentation , Hyperthermia, Induced/methodsABSTRACT
PURPOSE: The objectives of this study were to develop numerical models of interstitial ultrasound ablation of tumours within or adjacent to bone, to evaluate model performance through theoretical analysis, and to validate the models and approximations used through comparison to experiments. METHODS: 3D transient biothermal and acoustic finite element models were developed, employing four approximations of 7-MHz ultrasound propagation at bone/soft tissue interfaces. The various approximations considered or excluded reflection, refraction, angle-dependence of transmission coefficients, shear mode conversion, and volumetric heat deposition. Simulations were performed for parametric and comparative studies. Experiments within ex vivo tissues and phantoms were performed to validate the models by comparison to simulations. Temperature measurements were conducted using needle thermocouples or magnetic resonance temperature imaging (MRTI). Finite element models representing heterogeneous tissue geometries were created based on segmented MR images. RESULTS: High ultrasound absorption at bone/soft tissue interfaces increased the volumes of target tissue that could be ablated. Models using simplified approximations produced temperature profiles closely matching both more comprehensive models and experimental results, with good agreement between 3D calculations and MRTI. The correlation coefficients between simulated and measured temperature profiles in phantoms ranged from 0.852 to 0.967 (p-value < 0.01) for the four models. CONCLUSIONS: Models using approximations of interstitial ultrasound energy deposition around bone/soft tissue interfaces produced temperature distributions in close agreement with comprehensive simulations and experimental measurements. These models may be applied to accurately predict temperatures produced by interstitial ultrasound ablation of tumours near and within bone, with applications toward treatment planning.
Subject(s)
Models, Theoretical , Neoplasms/therapy , Ultrasonic Therapy , Acoustics , Animals , Body Temperature , Bone and Bones , Cattle , Finite Element Analysis , Muscles , SwineABSTRACT
Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.
Subject(s)
Hyperthermia, Induced , Models, Biological , Computer Simulation , Humans , Neoplasms/therapyABSTRACT
BACKGROUND: The size of catheter-based ultrasound devices for delivering ultrasound energy to deep-seated tumors is constrained by the access pathway which limits their therapeutic capabilities. PURPOSE: To devise and investigate a deployable applicator suitable for minimally-invasive delivery of therapeutic ultrasound, consisting of a 2D cylindrical sectored-ring ultrasound phased array, integrated within an expandable paraboloid-shaped balloon-based reflector. The balloon can be collapsed for compact delivery and expanded close to the target position to mimic a larger-diameter concentric-ring sector-vortex array for enhanced dynamic control of focal depth and volume. METHODS: Acoustic and biothermal simulations were employed in 3D generalized homogeneous and patient-specific heterogeneous models, for three-phased array transducers with 32, 64, and 128 elements, composed of sectored 4, 8, and 16 tubular ring transducers, respectively. The applicator performance was characterized as a function of array configuration, focal depth, phasing modes, and balloon reflector geometry. A 16-element proof-of-concept phased array applicator assembly, consisting of four tubular transducers each divided into four sectors, was fabricated, and characterized with hydrophone measurements along and across the axis, and ablations in ex vivo tissue. RESULTS: Simulation results indicated that transducer arrays (1.5 MHz, 9 mm OD × 20 mm long), balloon sizes (41-50 mm expanded diameter, 20-60 mm focal depth), phasing mode (0-4) and sonication duration (30 s) can produce spatially localized acoustic intensity focal patterns (focal length: 3-22 mm, focal width: 0.7-8.7 mm) and ablative thermal lesions (width: 2.7-16 mm, length: 6-46 mm) in pancreatic tissue across a 10-90 mm focal depth range. Patient-specific studies indicated that 0.1, 0.46, and 1.2 cm3 volume of tumor can be ablated in the body of the pancreas for 120 s sonications using a single axial focus (Mode 0), or four, and eight simultaneous foci in a toroidal pattern (Mode 2 and 4, respectively). Hydrophone measurements demonstrated good agreement with simulation. Experiments in which chicken meat was thermally ablated indicated that volumetric ablation can be produced using single or multiple foci. CONCLUSIONS: The results of this study demonstrated the feasibility of a novel compact ultrasound applicator design capable of focusing, deep penetration, electronic steering, and volumetric thermal ablation. The proposed applicator can be used for compact endoluminal or laparoscopic delivery of localized ultrasound energy to deep-seated targets.