ABSTRACT
ABSTRACT: Mutations in the TP53 gene, particularly multihit alterations, have been associated with unfavorable clinical features and prognosis in patients diagnosed with myelodysplastic syndrome (MDS). Despite this, the role of TP53 gene aberrations in MDS with isolated deletion of chromosome 5 [MDS-del(5q)] remains unclear. This study aimed to assess the impact of TP53 gene mutations and their allelic state in patients with MDS-del(5q). To that end, a comprehensive analysis of TP53 abnormalities, examining both TP53 mutations and allelic imbalances, in 682 patients diagnosed with MDS-del(5q) was conducted. Twenty-four percent of TP53-mutated patients exhibited multihit alterations, whereas the remaining patients displayed monoallelic mutations. TP53-multihit alterations were predictive of an increased risk of leukemic transformation. The impact of monoallelic alterations was dependent on the variant allele frequency (VAF); patients with TP53-monoallelic mutations and VAF <20% exhibited behavior similar to TP53 wild type, and those with TP53-monoallelic mutations and VAF ≥20% presented outcomes equivalent to TP53-multihit patients. This study underscores the importance of considering TP53 allelic state and VAF in the risk stratification and treatment decision-making process for patients with MDS-del(5q).
Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 5 , Myelodysplastic Syndromes , Tumor Suppressor Protein p53 , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Alleles , Chromosomes, Human, Pair 5/genetics , Gene Frequency , Mutation , Myelodysplastic Syndromes/genetics , Prognosis , Tumor Suppressor Protein p53/geneticsABSTRACT
BACKGROUND: Unmet medical needs remain in patients with red blood cell transfusion-dependent (RBC-TD) lower-risk myelodysplastic syndromes (LR-MDS) who are not responding to or are ineligible for erythropoiesis-stimulating agents (ESAs). Imetelstat, a competitive telomerase inhibitor, showed promising results in a phase 2 trial. We aimed to compare the RBC transfusion independence (RBC-TI) rate with imetelstat versus placebo in patients with RBC-TD LR-MDS. METHODS: In phase 3 of IMerge, a double-blind, placebo-controlled trial conducted in 118 sites including university hospitals, cancer centres, and outpatient clinics in 17 countries, patients (aged ≥18 years) with ESA-relapsed, ESA-refractory, or ESA-ineligible LR-MDS (low or intermediate-1 risk disease as per International Prognostic Scoring System [IPSS] criteria) were randomly assigned via a computer-generated schedule (2:1) to receive imetelstat 7·5 mg/kg or placebo, administered as a 2-h intravenous infusion, every 4 weeks until disease progression, unacceptable toxic effects, or withdrawal of consent. Randomisation was stratified by previous RBC transfusion burden and IPSS risk group. Patients, investigators, and those analysing the data were masked to group assignment. The primary endpoint was 8-week RBC-TI, defined as the proportion of patients without RBC transfusions for at least 8 consecutive weeks starting on the day of randomisation until subsequent anti-cancer therapy, if any. Primary efficacy analyses were performed in the intention-to-treat population, and safety analyses were conducted in patients who received at least one dose of trial medication or placebo. This trial is registered with ClinicalTrials.gov (NCT02598661; substudy active and recruiting). FINDINGS: Between Sept 11, 2019, and Oct 13, 2021, 178 patients were enrolled and randomly assigned (118 to imetelstat and 60 to placebo). 111 (62%) were male and 67 (38%) were female. 91 (77%) of 118 patients had discontinued treatment by data cutoff in the imetelstat group versus 45 (75%) in the placebo group; a further one patient in the placebo group did not receive treatment. Median follow-up was 19·5 months (IQR 12·0-23·4) in the imetelstat group and 17·5 months (12·1-22·7) in the placebo group. In the imetelstat group, 47 (40% [95% CI 30·9-49·3]) patients had an RBC-TI of at least 8 weeks versus nine (15% [7·1-26·6]) in the placebo group (rate difference 25% [9·9 to 36·9]; p=0·0008). Overall, 107 (91%) of 118 patients receiving imetelstat and 28 (47%) of 59 patients receiving placebo had grade 3-4 treatment-emergent adverse events. The most common treatment-emergent grade 3-4 adverse events in patients taking imetelstat were neutropenia (80 [68%] patients who received imetelstat vs two [3%] who received placebo) and thrombocytopenia (73 [62%] vs five [8%]). No treatment-related deaths were reported. INTERPRETATION: Imetelstat offers a novel mechanism of action with durable transfusion independence (approximately 1 year) and disease-modifying activity for heavily transfused patients with LR-MDS who are not responding to or are ineligible for ESAs. FUNDING: Janssen Research & Development before April 18, 2019, and Geron Corporation thereafter.
Subject(s)
Myelodysplastic Syndromes , Oligonucleotides , Thrombocytopenia , Humans , Male , Female , Adolescent , Adult , Treatment Outcome , Erythropoiesis , Myelodysplastic Syndromes/drug therapy , Thrombocytopenia/drug therapy , Double-Blind Method , Antineoplastic Combined Chemotherapy ProtocolsABSTRACT
Myelodysplastic syndromes/myelodysplastic neoplasms (MDS) are associated with variable clinical presentations and outcomes. The initial response criteria developed by the International Working Group (IWG) in 2000 have been used in clinical practice, clinical trials, regulatory reviews, and drug labels. Although the IWG criteria were revised in 2006 and 2018 (the latter focusing on lower-risk disease), limitations persist in their application to higher-risk MDS (HR-MDS) and their ability to fully capture the clinical benefits of novel investigational drugs or serve as valid surrogates for longer-term clinical end points (eg, overall survival). Further, issues related to the ambiguity and practicality of some criteria lead to variability in interpretation and interobserver inconsistency in reporting results from the same sets of data. Thus, we convened an international panel of 36 MDS experts and used an established modified Delphi process to develop consensus recommendations for updated response criteria that would be more reflective of patient-centered and clinically relevant outcomes in HR-MDS. Among others, the IWG 2023 criteria include changes in the hemoglobin threshold for complete remission (CR), the introduction of CR with limited count recovery and CR with partial hematologic recovery as provisional response criteria, the elimination of marrow CR, and specific recommendations for the standardization of time-to-event end points and the derivation and reporting of responses. The updated criteria should lead to a better correlation between patient-centered outcomes and clinical trial results in an era of multiple emerging new agents with novel mechanisms of action.
Subject(s)
Hematology , Myelodysplastic Syndromes , Humans , Treatment Outcome , Consensus , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/drug therapy , Outcome Assessment, Health CareABSTRACT
Patients aged 50 or above diagnosed with myeloid neoplasms (MNs) are typically not candidates for germline testing. However, approximately 8% carry pathogenic germline variants. Allogeneic haematopoietic stem cell transplantation (alloHSCT) remains an option for those aged over 50; neglecting germline testing could mask the risk for relative donor cell-derived MN. We propose a germline-augmented somatic panel (GASP), combining MN predisposition genes with a myeloid somatic panel for timely germline variant identification when initial testing is not indicated. Out of our 133 whole-exome-sequenced MN cases aged over 50 years, 9% had pathogenic/likely variants. GASP detected 92%, compared to 50% with somatic-only panel. Our study highlights the relevance of germline screening in MN, particularly for alloHSCT candidates without established germline-testing recommendations.
Subject(s)
Germ-Line Mutation , Hematopoietic Stem Cell Transplantation , Humans , Middle Aged , Male , Female , Aged , Genetic Testing/methods , Genetic Predisposition to Disease , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/diagnosis , Exome Sequencing , Transplantation, HomologousABSTRACT
Chronic myelomonocytic leukaemia (CMML) is a rare haematological disorder characterized by monocytosis and dysplastic changes in myeloid cell lineages. Accurate risk stratification is essential for guiding treatment decisions and assessing prognosis. This study aimed to validate the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes (AIPSS-MDS) in CMML and to assess its performance compared with traditional scores using data from a Spanish registry (n = 1343) and a Taiwanese hospital (n = 75). In the Spanish cohort, the AIPSS-MDS accurately predicted overall survival (OS) and leukaemia-free survival (LFS), outperforming the Revised-IPSS score. Similarly, in the Taiwanese cohort, the AIPSS-MDS demonstrated accurate predictions for OS and LFS, showing superiority over the IPSS score and performing better than the CPSS and molecular CPSS scores in differentiating patient outcomes. The consistent performance of the AIPSS-MDS across both cohorts highlights its generalizability. Its adoption as a valuable tool for personalized treatment decision-making in CMML enables clinicians to identify high-risk patients who may benefit from different therapeutic interventions. Future studies should explore the integration of genetic information into the AIPSS-MDS to further refine risk stratification in CMML and improve patient outcomes.
Subject(s)
Leukemia, Myelomonocytic, Chronic , Leukemia , Myelodysplastic Syndromes , Humans , Leukemia, Myelomonocytic, Chronic/diagnosis , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/drug therapy , Prognosis , Artificial Intelligence , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/drug therapy , Risk AssessmentABSTRACT
Cytogenetics has long represented a critical component in the clinical evaluation of hematologic malignancies. Chromosome banding studies provide a simultaneous snapshot of genome-wide copy number and structural variation, which have been shown to drive tumorigenesis, define diseases, and guide treatment. Technological innovations in sequencing have ushered in our present-day clinical genomics era. With recent publications highlighting novel sequencing technologies as alternatives to conventional cytogenetic approaches, we, an international consortium of laboratory geneticists, pathologists, and oncologists, describe herein the advantages and limitations of both conventional chromosome banding and novel sequencing technologies and share our considerations on crucial next steps to implement these novel technologies in the global clinical setting for a more accurate cytogenetic evaluation, which may provide improved diagnosis and treatment management. Considering the clinical, logistic, technical, and financial implications, we provide points to consider for the global evolution of cytogenetic testing.
Subject(s)
Hematologic Neoplasms , Chromosome Aberrations , Cytogenetic Analysis , Cytogenetics , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , HumansABSTRACT
BACKGROUND AIMS: Cytopenias after allogeneic stem cell transplantation (allo-SCT) are a common complication, the underlying pathogenic mechanisms of which remain incompletely understood. Multipotent mesenchymal stromal/stem cell (MSC) therapy has been successfully employed in the treatment of immune-related disorders and can aid in the restoration of the hematopoietic niche. METHODS: A phase II clinical trial to assess the efficacy and safety of administering four sequential doses of ex-vivo expanded bone marrow MSCs from a third-party donor to patients with persistent severe cytopenias after allo-SCT was performed. RESULTS: The overall response rate on day 90 was 75% among the 27 evaluable patients (comprising 12 complete responses, 8 partial responses, and 7 with no response). The median time to respond was 14.5 days. Responses were observed across different profiles, including single or multiple affected lineages, primary or secondary timing, and potential immune-mediated or post-infectious pathophysiology versus idiopathic origin. With a median follow-up for surviving patients of 85 months after MSC infusion, 53% of patients are alive. Notably, no adverse events related to MSC therapy were reported. CONCLUSIONS: In summary, the sequential infusion of third-party MSCs emerges as a viable and safe therapeutic option, exhibiting potential benefits for patients experiencing cytopenias following allo-SCT.
Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Adult , Female , Mesenchymal Stem Cell Transplantation/methods , Male , Middle Aged , Mesenchymal Stem Cells/cytology , Transplantation, Homologous/methods , Aged , Treatment Outcome , CytopeniaABSTRACT
Aim: To assess treatment patterns and outcomes in patients with non-del(5q) lower-risk myelodysplastic syndromes.Methods: Patient medical records were reviewed in the USA, Canada (CAN), UK and the EU.Results: Analysis included 119 patients in the USA/CAN (median age, 61.5 years) and 245 patients in the UK/EU (median age, 67.3 years). Most patients received erythropoiesis-stimulating agents (ESAs) as first-line (1L) therapy (USA/CAN: 89.0%; UK/EU: 90.2%). A substantial proportion of 1L erythropoiesis-stimulating agent-treated patients were transfusion dependent before 1L (USA/CAN: 37.1%; UK/EU: 51.2%); a small percentage of these patients achieved transfusion independence during 1L therapy (USA/CAN: 2.8%; UK/EU: 14.4%).Conclusion: These findings highlight an unmet need for more effective treatments among patients with non-del(5q) lower-risk myelodysplastic syndromes.
[Box: see text].
Subject(s)
Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/genetics , Male , Female , Aged , Middle Aged , Canada/epidemiology , United States/epidemiology , Europe , Treatment Outcome , Chromosomes, Human, Pair 5/genetics , Hematinics/therapeutic use , Aged, 80 and over , Medical Records , AdultABSTRACT
BACKGROUND: Patients with anemia and lower-risk myelodysplastic syndromes in whom erythropoiesis-stimulating agent therapy is not effective generally become dependent on red-cell transfusions. Luspatercept, a recombinant fusion protein that binds transforming growth factor ß superfamily ligands to reduce SMAD2 and SMAD3 signaling, showed promising results in a phase 2 study. METHODS: In a double-blind, placebo-controlled, phase 3 trial, we randomly assigned patients with very-low-risk, low-risk, or intermediate-risk myelodysplastic syndromes (defined according to the Revised International Prognostic Scoring System) with ring sideroblasts who had been receiving regular red-cell transfusions to receive either luspatercept (at a dose of 1.0 up to 1.75 mg per kilogram of body weight) or placebo, administered subcutaneously every 3 weeks. The primary end point was transfusion independence for 8 weeks or longer during weeks 1 through 24, and the key secondary end point was transfusion independence for 12 weeks or longer, assessed during both weeks 1 through 24 and weeks 1 through 48. RESULTS: Of the 229 patients enrolled, 153 were randomly assigned to receive luspatercept and 76 to receive placebo; the baseline characteristics of the patients were balanced. Transfusion independence for 8 weeks or longer was observed in 38% of the patients in the luspatercept group, as compared with 13% of those in the placebo group (P<0.001). A higher percentage of patients in the luspatercept group than in the placebo group met the key secondary end point (28% vs. 8% for weeks 1 through 24, and 33% vs. 12% for weeks 1 through 48; P<0.001 for both comparisons). The most common luspatercept-associated adverse events (of any grade) included fatigue, diarrhea, asthenia, nausea, and dizziness. The incidence of adverse events decreased over time. CONCLUSIONS: Luspatercept reduced the severity of anemia in patients with lower-risk myelodysplastic syndromes with ring sideroblasts who had been receiving regular red-cell transfusions and who had disease that was refractory to or unlikely to respond to erythropoiesis-stimulating agents or who had discontinued such agents owing to an adverse event. (Funded by Celgene and Acceleron Pharma; MEDALIST ClinicalTrials.gov number, NCT02631070; EudraCT number, 2015-003454-41.).
Subject(s)
Activin Receptors, Type II/therapeutic use , Anemia, Sideroblastic/drug therapy , Erythrocyte Transfusion , Hematinics/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Myelodysplastic Syndromes/drug therapy , Recombinant Fusion Proteins/therapeutic use , Activin Receptors, Type II/adverse effects , Adult , Aged , Aged, 80 and over , Anemia, Sideroblastic/therapy , Double-Blind Method , Female , Hematinics/adverse effects , Hemoglobins/analysis , Humans , Immunoglobulin Fc Fragments/adverse effects , Infusions, Subcutaneous , Male , Middle Aged , Myelodysplastic Syndromes/therapy , Recombinant Fusion Proteins/adverse effectsABSTRACT
Red blood cell transfusion independence (RBC-TI) is an important goal in treating lower-risk myelodysplastic syndromes with ring sideroblasts. In the phase 3 MEDALIST study, RBC-TI of ≥ 8 weeks was achieved by significantly more luspatercept- versus placebo-treated patients in the first 24 weeks of treatment. In this post hoc analysis, we evaluated RBC transfusion units and visits based on patients' baseline transfusion burden level and the clinical benefit of luspatercept treatment beyond week 25 in initial luspatercept nonresponders (patients who did not achieve RBC-TI ≥ 8 weeks by week 25) but continued luspatercept up to 144 weeks. RBC transfusion burden, erythroid response, serum ferritin levels, and hemoglobin levels relative to baseline were evaluated. Through week 25, fewer RBC transfusion units and visits were observed in luspatercept-treated patients versus placebo, regardless of baseline transfusion burden. This continued through 144 weeks of luspatercept treatment, particularly in patients with low baseline transfusion burden. Sixty-eight patients were initial nonresponders at week 25 but continued treatment; most (81%) received the maximum dose of luspatercept (1.75 mg/kg). Sixteen percent achieved RBC-TI for ≥ 8 weeks during weeks 25-48, 26% had reduced RBC transfusion burden, 10% achieved an erythroid response, 44% had reduced serum ferritin, and hemoglobin levels increased an average of 1.3 g/dL from baseline. These data have implications for clinical practice, as transfusion units and visits are less in luspatercept-treated patients through week 25 regardless of baseline transfusion burden, and continuing luspatercept beyond week 25 can potentially provide additional clinical benefits for initial nonresponders. Trial registration: NCT02631070.
Subject(s)
Myelodysplastic Syndromes , Humans , Ferritins , Hemoglobins/analysis , Immunoglobulin Fc Fragments/therapeutic use , Myelodysplastic Syndromes/drug therapyABSTRACT
Cardiovascular disease (CVD) involves the second cause of death in low-risk myelodysplastic syndrome (MDS) population. Prospective study to characterise the CVD and to identify predictors for the combined event (CE) cardiovascular event and/or all-cause mortality in transfusion dependent low-risk MDS patients. Thirty-one patients underwent a cardiac assessment including biomarkers and cardiac magnetic resonance (cMR) with parametric sequences (T1, T2 and T2* mapping) and myocardial deformation by feature tracking (FT) and were analysed for clonal hematopoiesis of indeterminate potential mutations. Cardiac assessment revealed high prevalence of unknown structural heart disease (51% cMR pathological findings). After 2·2 [0·44] years follow-up, 35·5% of patients suffered the CE: 16% death, 29% cardiovascular event. At multivariate analysis elevated NT-proBNP ≥ 486pg/ml (HR 96·7; 95%-CI 1·135-8243; P = 0·044), reduced native T1 time < 983ms (HR 44·8; 95%-CI 1·235-1623; P = 0·038) and higher left ventricular global longitudinal strain (LV-GLS) (HR 0·4; 95%-CI 0·196-0·973; P = 0·043) showed an independent prognostic value. These variables, together with the myocardial T2* time < 20ms, showed an additive prognostic value (Log Rank: 12·4; P = 0·001). In conclusion, low-risk MDS patients frequently suffer CVD. NT-proBNP value, native T1 relaxation time and longitudinal strain by FT are independent predictors of poor cardiovascular prognosis, thus, their determination would identify high-risk patients who could benefit from a cardiac treatment and follow-up.
Subject(s)
Blood Transfusion , Myelodysplastic Syndromes/mortality , Aged , Aged, 80 and over , Biomarkers , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/mortality , Cause of Death , Female , Follow-Up Studies , Humans , Iron Overload/etiology , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Middle Aged , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/therapy , Prognosis , Prospective Studies , RiskABSTRACT
In myelodysplastic syndromes (MDS), the 20q deletion [del(20q)] may cause deletion of the ASXL1 gene. We studied 153 patients with MDS and del(20q) to assess the incidence, prognostic value and impact on response to azacitidine (AZA) of ASXL1 chromosomal alterations and genetic mutations. Additionally, in vitro assay of the response to AZA in HAP1 (HAP1WT ) and HAP1 ASXL1 knockout (HAP1KN ) cells was performed. ASXL1 chromosomal alterations were detected in 44 patients (28·5%): 34 patients (22%) with a gene deletion (ASXL1DEL ) and 10 patients (6·5%) with additional gene copies. ASXL1DEL was associated with a lower platelet count. The most frequently mutated genes were U2AF1 (16%), ASXL1 (14%), SF3B1 (11%), TP53 (7%) and SRSF2 (6%). ASXL1 alteration due to chromosomal deletion or genetic mutation (ASXL1DEL /ASXL1MUT ) was linked by multivariable analysis with shorter overall survival [hazard ratio, (HR) 1·84; 95% confidence interval, (CI): 1·11-3·04; P = 0·018] and a higher rate for acute myeloid leukaemia progression (HR 2·47; 95% CI: 1·07-5·70, P = 0·034). ASXL1DEL /ASXL1MUT patients were correlated by univariable analysis with a worse response to AZA. HAP1KN cells showed more resistance to AZA compared to HAP1WT cells. In conclusion, ASXL1 alteration exerts a negative impact on MDS with del(20q) and could become useful for prognostic risk stratification and treatment decisions.
Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/therapeutic use , Chromosome Deletion , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Repressor Proteins/genetics , Aged , Aged, 80 and over , Female , Humans , Incidence , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/diagnosis , PrognosisABSTRACT
Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to secondary acute myeloid leukemia (sAML). However, the mutational dynamics and clonal evolution underlying disease progression are poorly understood at present. To elucidate the mutational dynamics of pathways and genes occurring during the evolution to sAML, next generation sequencing was performed on 84 serially paired samples of MDS patients who developed sAML (discovery cohort) and 14 paired samples from MDS patients who did not progress to sAML during follow-up (control cohort). Results were validated in an independent series of 388 MDS patients (validation cohort). We used an integrative analysis to identify how mutations, alone or in combination, contribute to leukemic transformation. The study showed that MDS progression to sAML is characterized by greater genomic instability and the presence of several types of mutational dynamics, highlighting increasing (STAG2) and newly-acquired (NRAS and FLT3) mutations. Moreover, we observed cooperation between genes involved in the cohesin and Ras pathways in 15-20% of MDS patients who evolved to sAML, as well as a high proportion of newly acquired or increasing mutations in the chromatin-modifier genes in MDS patients receiving a disease-modifying therapy before their progression to sAML.
Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neoplasms, Second Primary , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , CohesinsABSTRACT
The iron chelator deferasirox is widely used in patients with iron overload. Patients with low-grade myelodysplastic syndromes (MDS) get transfusion dependency and need to be treated with deferasirox to avoid iron overload. Moreover, in some patients an increase in both erythroid and platelets have been observed after deferasirox therapy. However, the mechanisms involved in these clinical findings are poorly understood. The aim of this work was to analyze, in patients treated with deferasirox, the changes in the gene-expression profile after receiving the treatment. A total of 15 patients with the diagnosis of low-grade MDS were studied. Microarrays were carried out in RNA from peripheral blood before and after 14 weeks of deferasirox therapy. Changes in 1457 genes and 54 miRNAs were observed: deferasirox induced the downregulation of genes related to the Nf kB pathway leading of an overall inactivation of this pathway. In addition, the iron chelator also downregulated gamma interferon. Altogether these changes could be related to the improvement of erythroid response observed in these patients after therapy. Moreover, the inhibition of NFE2L2/NRF2, which was predicted in silico, could be playing a critical role in the reduction of reactive oxygen species (ROS). Of note, miR-125b, overexpressed after deferasirox treatment, could be involved in the reduced inflammation and increased hematopoiesis observed in the patients after treatment. In summary this study shows, for the first time, the mechanisms that could be governing deferasirox impact in vivo.
Subject(s)
Deferasirox/therapeutic use , Erythropoiesis/drug effects , Gene Expression Profiling , Iron Chelating Agents/therapeutic use , Myelodysplastic Syndromes/drug therapy , Transcriptome/drug effects , Aged , Aged, 80 and over , Deferasirox/adverse effects , Erythropoiesis/genetics , Female , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Genome-Wide Association Study , Humans , Iron Chelating Agents/adverse effects , Male , Middle Aged , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Oligonucleotide Array Sequence Analysis , Pharmacogenetics , Treatment OutcomeABSTRACT
Mesenchymal stromal cells (MSC) may exert their functions by the release of extracellular vesicles (EV). Our aim was to analyze changes induced in CD34+ cells after the incorporation of MSC-EV. MSC-EV were characterized by flow cytometry (FC), Western blot, electron microscopy, and nanoparticle tracking analysis. EV incorporation into CD34+ cells was confirmed by FC and confocal microscopy, and then reverse transcription polymerase chain reaction and arrays were performed in modified CD34+ cells. Apoptosis and cell cycle were also evaluated by FC, phosphorylation of signal activator of transcription 5 (STAT5) by WES Simple, and clonal growth by clonogenic assays. Human engraftment was analyzed 4 weeks after CD34+ cell transplantation in nonobese diabetic/severe combined immunodeficient mice. Our results showed that MSC-EV incorporation induced a downregulation of proapoptotic genes, an overexpression of genes involved in colony formation, and an activation of the Janus kinase (JAK)-STAT pathway in CD34+ cells. A significant decrease in apoptosis and an increased CD44 expression were confirmed by FC, and increased levels of phospho-STAT5 were confirmed by WES Simple in CD34+ cells with MSC-EV. In addition, these cells displayed a higher colony-forming unit granulocyte/macrophage clonogenic potential. Finally, the in vivo bone marrow lodging ability of human CD34+ cells with MSC-EV was significantly increased in the injected femurs. In summary, the incorporation of MSC-EV induces genomic and functional changes in CD34+ cells, increasing their clonogenic capacity and their bone marrow lodging ability. Stem Cells 2019;37:1357-1368.
Subject(s)
Antigens, CD34/metabolism , Bone Marrow Cells/metabolism , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Humans , MiceABSTRACT
Patients with low-risk myelodysplastic syndromes (MDS) usually develop iron overload. This leads to a high level of oxidative stress in the bone marrow (BM) and increases haematopoietic cell dysfunction. Our objective was to analyse whether chelation with deferasirox (DFX) alleviates the consequences of oxidative stress and improves BM cell functionality. We analysed 13 iron-overloaded MDS patients' samples before and 4-10 months after treatment with DFX. Using multiparametric flow cytometry analysis, we measured intracellular reactive oxygen species (ROS), DNA oxidation and double strand breaks. Haematopoietic differentiation capacity was analysed by colony-forming unit (CFU) assays. Compared to healthy donors, MDS showed a higher level of intracellular ROS and DNA oxidative damage in BM cells. DNA oxidative damage decreased following DFX treatment. Furthermore, the clonogenic assays carried out before treatment suggest an impaired haematopoietic differentiation. DFX seems to improve this capacity, as illustrated by a decreased cluster/CFU ratio, which reached values similar to controls. We conclude that BM cells from MDS are subject to higher oxidative stress conditions and show an impaired haematopoietic differentiation. These adverse features seem to be partially rectified after DFX treatment.
Subject(s)
DNA Damage/drug effects , Deferasirox/therapeutic use , Iron Chelating Agents/therapeutic use , Myelodysplastic Syndromes/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Case-Control Studies , Cell Differentiation/drug effects , Cell Differentiation/physiology , Deferasirox/pharmacology , Humans , Iron Chelating Agents/pharmacology , Iron Overload/drug therapy , Iron Overload/etiology , Iron Overload/genetics , Iron Overload/metabolism , Middle Aged , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidative Stress/physiology , Prospective Studies , Reactive Oxygen Species/metabolism , Stem Cells/drug effects , Stem Cells/physiology , Young AdultSubject(s)
Activin Receptors, Type II/therapeutic use , Blood Platelets/drug effects , Hematinics/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Myelodysplastic Syndromes/drug therapy , Neutrophils/drug effects , Recombinant Fusion Proteins/therapeutic use , Adult , Aged , Aged, 80 and over , Blood Platelets/cytology , Female , Humans , Leukocyte Count , Male , Middle Aged , Neutrophils/cytology , Platelet CountABSTRACT
Somatic mutations in patients with myelodysplastic syndromes (MDS) undergoing allogeneic hematopoietic stem cell transplantation (HSTC) are associated with adverse outcome, but the role of chronic graft-versus-host disease (cGVHD) in this subset of patients remains unknown. We analyzed bone marrow samples from 115 patients with MDS collected prior to HSCT using next-generation sequencing. Seventy-one patients (61%) had at least one mutated gene. We found that patients with a higher number of mutated genes (more than 2) had a worse outcome (2 years overall survival [OS] 54.8% vs. 31.1%, p = 0.035). The only two significant variables in the multivariate analysis for OS were TET2 mutations (p = 0.046) and the development of cGVHD, considered as a time-dependent variable (p < 0.001), correlated with a worse and a better outcome, respectively. TP53 mutations also demonstrated impact on the cumulative incidence of relapse (CIR) (1 year CIR 47.1% vs. 9.8%, p = 0.006) and were related with complex karyotype (p = 0.003). cGVHD improved the outcome even among patients with more than 2 mutated genes (1-year OS 88.9% at 1 year vs. 31.3%, p = 0.02) and patients with TP53 mutations (1-year CIR 20% vs. 42.9%, p = 0.553). These results confirm that cGVHD could ameliorate the adverse impact of somatic mutations in patients with MDS with HSCT.
Subject(s)
Chromosome Aberrations , Graft vs Host Disease/genetics , Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes/genetics , Allografts , Bone Marrow/pathology , Chronic Disease , Female , Graft vs Host Disease/pathology , High-Throughput Nucleotide Sequencing , Humans , Incidence , Male , Middle Aged , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/therapy , Retrospective StudiesABSTRACT
Bone marrow mesenchymal stromal cells (MSCs) are precursors of adipocytes and osteoblasts and key regulators of hematopoiesis. Irradiation is widely used in conditioning regimens. Although MSCs are radio-resistant, the effects of low-dose irradiation on their behavior have not been extensively explored. Our aim was to evaluate the effect of 2.5 Gy on MSCs. Cells from 25 healthy donors were either irradiated or not (the latter were used as controls). Cells were characterized following International Society for Cellular Therapy criteria, including in vitro differentiation assays. Apoptosis was evaluated by annexin V/7-amino-actinomycin staining. Gene expression profiling and reverse transcriptase (RT)-PCR of relevant genes was also performed. Finally, long-term bone marrow cultures were performed to test the hematopoietic-supporting ability. Our results showed that immunophenotypic characterization and viability of irradiated cells was comparable with that of control cells. Gene expression profiling showed 50 genes differentially expressed. By RT-PCR, SDF-1 and ANGPT were overexpressed, whereas COL1A1 was downregulated in irradiated cells (P = .015, P = .007, and P = .031, respectively). Interestingly, differentiation of irradiated cells was skewed toward osteogenesis, whereas adipogenesis was impaired. Higher expression of genes involved in osteogenesis as SPP1 (P = .039) and lower of genes involved in adipogenesis, CEBPA and PPARG (P = .003 and P = .019), together with an increase in the mineralization capacity (Alizarin Red) was observed in irradiated cells. After differentiation, adipocyte counts were decreased in irradiated cells at days 7, 14, and 21 (P = .018 P = .046, and P = .018, respectively). Also, colony-forming unit granulocyte macrophage number in long-term bone marrow cultures was significantly higher in irradiated cells after 4 and 5 weeks (P = .046 and P = .007). In summary, the irradiation of MSCs with 2.5 Gy improves their hematopoietic-supporting ability by increasing osteogenic differentiation and decreasing adipogenesis.
Subject(s)
Adipogenesis/radiation effects , Cell Differentiation/radiation effects , Gamma Rays , Hematopoiesis/radiation effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/radiation effects , Adult , Aged , Female , Humans , Male , Mesenchymal Stem Cells/pathology , Middle AgedABSTRACT
Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34+ bone marrow selected cells and in an independent cohort of 74 CMML patients, mutationally contextualized by targeted sequencing, and assessed their transcriptional behavior in 70 myelodysplastic syndrome, 66 acute myeloid leukaemia and 25 chronic myeloid leukaemia cases. We found BAP1 and PARP1 down-regulation to be specific to CMML compared with other related disorders. Chromatin-regulator mutated cases showed decreased BAP1 dosage. We validated a significant over-expression of the double strand break-fidelity genes CDKN1A and ERCC1, independent of promoter methylation and associated with chemorefractoriness. In addition, patients bearing mutations in the splicing component SRSF2 displayed numerous aberrant splicing events in DNA repair genes, with a quantitative predominance in the single strand break pathway. Our results highlight potential targets in this disease, which currently has few therapeutic options.