Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32559462

ABSTRACT

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Subject(s)
RNA Caps/genetics , RNA Virus Infections/genetics , Recombinant Fusion Proteins/genetics , 5' Untranslated Regions/genetics , Animals , Cattle , Cell Line , Cricetinae , Dogs , Humans , Influenza A virus/metabolism , Mice , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Open Reading Frames/genetics , RNA Caps/metabolism , RNA Virus Infections/metabolism , RNA Viruses/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Fusion Proteins/metabolism , Transcription, Genetic/genetics , Viral Proteins/metabolism , Virus Replication/genetics
2.
Nature ; 619(7969): 338-347, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380775

ABSTRACT

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Subject(s)
Birds , Host Microbial Interactions , Influenza A virus , Influenza in Birds , Influenza, Human , Viral Zoonoses , Animals , Humans , Birds/virology , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/growth & development , Influenza A virus/isolation & purification , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/prevention & control , Influenza, Human/transmission , Influenza, Human/virology , Primates , Respiratory System/metabolism , Respiratory System/virology , Risk Assessment , Viral Zoonoses/prevention & control , Viral Zoonoses/transmission , Viral Zoonoses/virology , Virus Replication
3.
PLoS Pathog ; 19(12): e1011822, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055775

ABSTRACT

The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Endosomes , Animals , Cattle , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Endosomes/metabolism , Golgi Apparatus/metabolism , trans-Golgi Network/genetics , trans-Golgi Network/metabolism , Capsid Proteins/metabolism , Viral Proteins/metabolism
4.
PLoS Pathog ; 19(5): e1011357, 2023 05.
Article in English | MEDLINE | ID: mdl-37146066

ABSTRACT

Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.


Subject(s)
Influenza A virus , Influenza Vaccines , Viral Vaccines , Animals , Female , Humans , Mice , Influenza A virus/genetics , Vaccines, Attenuated , Chickens , Viral Vaccines/genetics , Vaccine Development , Virus Replication
5.
J Virol ; 97(9): e0055523, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37668370

ABSTRACT

In vitro investigations of host-virus interactions are reliant on suitable cell and tissue culture models. Results are only as good as the model they are generated in. However, choosing cell models for in vitro work often depends on availability and previous use alone. Despite the vast increase in coronavirus research over the past few years, scientists are still heavily reliant on: non-human, highly heterogeneous or not fully differentiated, or naturally unsusceptible cells requiring overexpression of receptors and other accessory factors. Complex primary or stem cell models are highly representative of human tissues but are expensive and time-consuming to develop and maintain with limited suitability for high-throughput experiments.Using tissue-specific expression patterns, we identified human kidney cells as an ideal target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and broader coronavirus infection. We show the use of the well-characterized human kidney cell line Caki-1 for infection with three human coronaviruses (hCoVs): Betacoronaviruses SARS-CoV-2 and Middle Eastern respiratory syndrome coronavirus and Alphacoronavirus hCoV 229E. Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cell lines for the cultivation of the respective virus. Antibody staining against SARS-CoV-2 N protein shows comparable replication rates. A panel of 26 custom antibodies shows the location of SARS-CoV-2 proteins during replication using immunocytochemistry. In addition, Caki-1 cells were found to be susceptible to two other human respiratory viruses, influenza A virus and respiratory syncytial virus, making them an ideal model for cross-comparison for a broad range of respiratory viruses. IMPORTANCE Cell lines remain the backbone of virus research, but results are only as good as their originating model. Despite increased research into human coronaviruses following the COVID-19 pandemic, researchers continue to rely on suboptimal cell line models of: non-human origin, incomplete differentiation, or lacking active interferon responses. We identified the human kidney Caki-1 cell line as a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This cell line could be shown to be infectable with a wide range of coronaviruses including common cold virus hCoV-229E, epidemic virus MERS-CoV, and SARS-CoV-2 as well as other important respiratory viruses influenza A virus and respiratory syncytial virus. We could show the localization of 26 SARS-CoV-2 proteins in Caki-1 cells during natural replication and the cells are competent of forming a cellular immune response. Together, this makes Caki-1 cells a unique tool for cross-virus comparison in one cell line.


Subject(s)
Cell Line , Coronaviridae Infections , Coronaviridae , Humans , Coronaviridae/physiology , Kidney/cytology , Pandemics , Coronaviridae Infections/pathology , Coronaviridae Infections/virology
6.
Nucleic Acids Res ; 50(12): 7097-7114, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35736141

ABSTRACT

The E3 ubiquitin ligase TRIM25 is a key factor in the innate immune response to RNA viruses. TRIM25 has been shown to play a role in the retinoic-acid-inducible gene-1 (RIG-I) pathway, which triggers expression of type 1 interferons upon viral infection. We and others have shown that TRIM25 is an RNA-binding protein; however, the role of TRIM25 RNA-binding in the innate immune response to RNA viruses is unclear. Here, we demonstrate that influenza A virus (IAV A/PR/8/34_NS1(R38A/K41A)) infection is inhibited by TRIM25. Surprisingly, previously identified RNA-binding deficient mutant TRIM25ΔRBD and E3 ubiquitin ligase mutant TRIM25ΔRING, which lack E3 ubiquitin ligase activity, still inhibited IAV replication. Furthermore, we show that in human-derived cultured cells, activation of the RIG-I/interferon type 1 pathway mediated by either an IAV-derived 5'-triphosphate RNA or by IAV itself does not require TRIM25 activity. Additionally, we present new evidence that instead of TRIM25 directly inhibiting IAV transcription it binds and destabilizes IAV mRNAs. Finally, we show that direct tethering of TRIM25 to RNA is sufficient to downregulate the targeted RNA. In summary, our results uncover a potential mechanism that TRIM25 uses to inhibit IAV infection and regulate RNA metabolism.


Subject(s)
Influenza A virus , Humans , RNA, Messenger/genetics , Influenza A virus/genetics , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/genetics , Transcription Factors
7.
Emerg Infect Dis ; 29(6): 1244-1249, 2023 06.
Article in English | MEDLINE | ID: mdl-37209677

ABSTRACT

Two novel reassortant highly pathogenic avian influenza viruses (H5N1) clade 2.3.4.4b.2 were identified in dead migratory birds in China in November 2021. The viruses probably evolved among wild birds through different flyways connecting Europe and Asia. Their low antigenic reaction to vaccine antiserum indicates high risks to poultry and to public health.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Influenza in Birds/epidemiology , Phylogeny , Birds , Animals, Wild , Poultry , China/epidemiology , Influenza A virus/genetics
8.
J Virol ; 96(14): e0048822, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35758692

ABSTRACT

Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.


Subject(s)
Reverse Genetics , Rotavirus , Spike Glycoprotein, Coronavirus , Vaccine Development , Amino Acids/metabolism , Animals , Antibodies, Viral/metabolism , COVID-19/virology , Epitopes/genetics , Epitopes/metabolism , Humans , Microorganisms, Genetically-Modified , Rotavirus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccine Development/methods
9.
Phys Rev Lett ; 131(24): 248102, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181132

ABSTRACT

A recent theory suggests that the evaporation kinetics of macromolecular solutions is insensitive to the ambient relative humidity (RH) due to the formation of a "polarization layer" of solutes at the air-solution interface. We confirm this insensitivity up to RH≈80% in the evaporation of polyvinyl alcohol solutions from open-ended capillaries. To explain the observed drop in evaporation rate at higher RH, we need to invoke compressive stresses due to interfacial polymer gelation. Moreover, RH-insensitive evaporation sets in earlier than theory predicts, suggesting a further role for a gelled "skin." We discuss the relevance of these observations for respiratory virus transmission via aerosols.

10.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33544070

ABSTRACT

Influenza A viruses encode several accessory proteins that have host- and strain-specific effects on virulence and replication. The accessory protein PA-X is expressed due to a ribosomal frameshift during translation of the PA gene. Depending on the particular combination of virus strain and host species, PA-X has been described as either acting to reduce or increase virulence and/or virus replication. In this study, we set out to investigate the role PA-X plays in H9N2 avian influenza viruses, focusing on the natural avian host, chickens. We found that the G1 lineage A/chicken/Pakistan/UDL-01/2008 (H9N2) PA-X induced robust host shutoff in both mammalian and avian cells and increased virus replication in mammalian, but not avian cells. We further showed that PA-X affected embryonic lethality in ovo and led to more rapid viral shedding and widespread organ dissemination in vivo in chickens. Overall, we conclude PA-X may act as a virulence factor for H9N2 viruses in chickens, allowing faster replication and wider organ tropism.


Subject(s)
Influenza A Virus, H9N2 Subtype/metabolism , Influenza in Birds/virology , Influenza, Human/virology , Repressor Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Virulence Factors/metabolism , Animals , Cell Line , Chickens , Cytokines/genetics , Cytokines/immunology , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/genetics , Influenza in Birds/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Lung/immunology , Lung/virology , Mice , Repressor Proteins/genetics , Viral Nonstructural Proteins/genetics , Virulence Factors/genetics , Virus Replication , Virus Shedding
11.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: mdl-32727875

ABSTRACT

H9N2 avian influenza viruses (AIVs) circulate in poultry throughout much of Asia, the Middle East, and Africa. These viruses cause huge economic damage to poultry production systems and pose a zoonotic threat both in their own right and in the generation of novel zoonotic viruses, for example, H7N9. In recent years, it has been observed that H9N2 viruses have further adapted to gallinaceous poultry, becoming more highly transmissible and causing higher morbidity and mortality. Here, we investigate the molecular basis for this increased virulence, comparing a virus from the 1990s and a contemporary field strain. The modern virus replicated to higher titers in various systems, and this difference mapped to a single amino acid polymorphism at position 26 of the endonuclease domain shared by the PA and PA-X proteins. This change was responsible for increased replication and higher morbidity and mortality rates along with extended tissue tropism seen in chickens. Although the PA K26E change correlated with increased host cell shutoff activity of the PA-X protein in vitro, it could not be overridden by frameshift site mutations that block PA-X expression and therefore increased PA-X activity could not explain the differences in replication phenotype. Instead, this indicates that these differences are due to subtle effects on PA function. This work gives insight into the ongoing evolution and poultry adaptation of H9N2 and other avian influenza viruses and helps us understand the striking morbidity and mortality rates in the field, as well as the rapidly expanding geographical range seen in these viruses.IMPORTANCE Avian influenza viruses, such as H9N2, cause huge economic damage to poultry production worldwide and are additionally considered potential pandemic threats. Understanding how these viruses evolve in their natural hosts is key to effective control strategies. In the Middle East and South Asia, an older H9N2 virus strain has been replaced by a new reassortant strain with greater fitness. Here, we take representative viruses and investigate the genetic basis for this "fitness." A single mutation in the virus was responsible for greater fitness, enabling high growth of the contemporary H9N2 virus in cells, as well as in chickens. The genetic mutation that modulates this change is within the viral PA protein, a part of the virus polymerase gene that contributes to viral replication as well as to virus accessory functions-however, we find that the fitness effect is specifically due to changes in the protein polymerase activity.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , RNA-Dependent RNA Polymerase , Viral Proteins , Viral Tropism , Animals , Chickens , Dogs , HEK293 Cells , Humans , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/genetics , Influenza in Birds/metabolism , Influenza in Birds/pathology , Madin Darby Canine Kidney Cells , Poultry Diseases/genetics , Poultry Diseases/metabolism , Poultry Diseases/pathology , Poultry Diseases/virology , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
12.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32161175

ABSTRACT

Macrophages in the lung detect and respond to influenza A virus (IAV), determining the nature of the immune response. Using terminal-depth cap analysis of gene expression (CAGE), we quantified transcriptional activity of both host and pathogen over a 24-h time course of IAV infection in primary human monocyte-derived macrophages (MDMs). This method allowed us to observe heterogenous host sequences incorporated into IAV mRNA, "snatched" 5' RNA caps, and corresponding RNA sequences from host RNAs. In order to determine whether cap-snatching is random or exhibits a bias, we systematically compared host sequences incorporated into viral mRNA ("snatched") against a complete survey of all background host RNA in the same cells, at the same time. Using a computational strategy designed to eliminate sources of bias due to read length, sequencing depth, and multimapping, we were able to quantify overrepresentation of host RNA features among the sequences that were snatched by IAV. We demonstrate biased snatching of numerous host RNAs, particularly small nuclear RNAs (snRNAs), and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then used a systems approach to describe the transcriptional landscape of the host response to IAV, observing many new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments.IMPORTANCE Infection with influenza A virus (IAV) infection is responsible for an estimated 500,000 deaths and up to 5 million cases of severe respiratory illness each year. In this study, we looked at human primary immune cells (macrophages) infected with IAV. Our method allows us to look at both the host and the virus in parallel. We used these data to explore a process known as "cap-snatching," where IAV snatches a short nucleotide sequence from capped host RNA. This process was believed to be random. We demonstrate biased snatching of numerous host RNAs, including those associated with snRNA transcription, and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then describe the transcriptional landscape of the host response to IAV, observing new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments.


Subject(s)
Base Sequence , Influenza A virus/genetics , Influenza, Human/virology , Transcription, Genetic/physiology , Bias , Gene Regulatory Networks , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Influenza A virus/drug effects , Lipopolysaccharides/pharmacology , Macrophages , RNA Caps/genetics , RNA, Messenger , RNA, Small Nuclear/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Virus Replication
13.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30381488

ABSTRACT

The PA-X protein of influenza A virus has roles in host cell shutoff and viral pathogenesis. While most strains are predicted to encode PA-X, strain-dependent variations in activity have been noted. We found that PA-X protein from the A/PR/8/34 (PR8) strain had significantly lower repressive activity against cellular gene expression than PA-X proteins from the avian strains A/turkey/England/50-92/91 (H5N1) (T/E) and A/chicken/Rostock/34 (H7N1). Loss of normal PA-X expression, either by mutation of the frameshift site or by truncating the X open reading frame (ORF), had little effect on the infectious virus titer of PR8 or PR8 7:1 reassortants with T/E segment 3 grown in embryonated hens' eggs. However, in both virus backgrounds, mutation of PA-X led to decreased embryo mortality and lower overall pathology, effects that were more pronounced in the PR8 strain than in the T/E reassortant, despite the low shutoff activity of the PR8 PA-X. Purified PA-X mutant virus particles displayed an increased ratio of hemagglutinin (HA) to nucleoprotein (NP) and M1 compared to values for their wild-type (WT) counterparts, suggesting altered virion composition. When the PA-X gene was mutated in the background of poorly growing PR8 6:2 vaccine reassortant analogues containing the HA and neuraminidase (NA) segments from H1N1 2009 pandemic viruses or from an avian H7N3 strain, HA yield increased up to 2-fold. This suggests that the PR8 PA-X protein may harbor a function unrelated to host cell shutoff and that disruption of the PA-X gene has the potential to improve the HA yield of vaccine viruses.IMPORTANCE Influenza A virus is a widespread pathogen that affects both humans and a variety of animal species, causing regular epidemics and sporadic pandemics, with major public health and economic consequences. A better understanding of virus biology is therefore important. The primary control measure is vaccination, which for humans mostly relies on antigens produced in eggs from PR8-based viruses bearing the glycoprotein genes of interest. However, not all reassortants replicate well enough to supply sufficient virus antigen for demand. The significance of our research lies in identifying that mutation of the PA-X gene in the PR8 strain of virus can improve antigen yield, potentially by decreasing the pathogenicity of the virus in embryonated eggs.


Subject(s)
Influenza A virus/pathogenicity , Mutation , Reassortant Viruses/pathogenicity , Repressor Proteins/genetics , Viral Nonstructural Proteins/genetics , Animals , Chick Embryo , Chickens , Dogs , HEK293 Cells , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H7N1 Subtype/genetics , Influenza A Virus, H7N1 Subtype/pathogenicity , Influenza A virus/genetics , Influenza in Birds/virology , Madin Darby Canine Kidney Cells , Reassortant Viruses/genetics
14.
Vet Res ; 51(1): 2, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924278

ABSTRACT

The avian respiratory tract is a common entry route for many pathogens and an important delivery route for vaccination in the poultry industry. Immune responses in the avian lung have mostly been studied in vivo due to the lack of robust, relevant in vitro and ex vivo models mimicking the microenvironment. Precision-cut lung slices (PCLS) have the major advantages of maintaining the 3-dimensional architecture of the lung and includes heterogeneous cell populations. PCLS have been obtained from a number of mammalian species and from chicken embryos. However, as the embryonic lung is physiologically undifferentiated and immunologically immature, it is less suitable to examine complex host-pathogen interactions including antimicrobial responses. Here we prepared PCLS from immunologically mature chicken lungs, tested different culture conditions, and found that serum supplementation has a detrimental effect on the quality of PCLS. Viable cells in PCLS remained present for ≥ 40 days, as determined by viability assays and sustained motility of fluorescent mononuclear phagocytic cells. The PCLS were responsive to lipopolysaccharide stimulation, which induced the release of nitric oxide, IL-1ß, type I interferons and IL-10. Mononuclear phagocytes within the tissue maintained phagocytic activity, with live cell imaging capturing interactions with latex beads and an avian pathogenic Escherichia coli strain. Finally, the PCLS were also shown to be permissive to infection with low pathogenic avian influenza viruses. Taken together, immunologically mature chicken PCLS provide a suitable model to simulate live organ responsiveness and cell dynamics, which can be readily exploited to examine host-pathogen interactions and inflammatory responses.


Subject(s)
Chickens , Host-Pathogen Interactions/immunology , Lung/immunology , Poultry Diseases/immunology , Veterinary Medicine/methods , Animals , Chickens/immunology , Lipopolysaccharides/metabolism , Lung/microbiology , Lung/parasitology , Poultry Diseases/microbiology , Poultry Diseases/parasitology
15.
J Gen Virol ; 100(3): 414-430, 2019 03.
Article in English | MEDLINE | ID: mdl-30672726

ABSTRACT

The accessory protein, PB1-F2, of influenza A virus (IAV) functions in a chicken host to prolong infectious virus shedding and thus the transmission window. Here we show that this delay in virus clearance by PB1-F2 in chickens is accompanied by reduced transcript levels of type 1 interferon (IFN)-induced genes and NFκB-activated pro-inflammation cytokines. In vitro, two avian influenza isolate-derived PB1-F2 proteins, H9N2 UDL01 and H5N1 5092, exhibited the same antagonism of the IFN and pro-inflammation induction pathways seen in vivo, but to different extents. The two PB1-F2 proteins had different cellular localization in chicken cells, with H5N1 5092 being predominantly mitochondrial-associated and H9N2 UDL being cytoplasmic but not mitochondrial-localized. We hypothesized that PB1-F2 localization might influence the functionality of the protein during infection and that the protein sequence could alter cellular localization. We demonstrated that the sequence of the C-terminus of PB1-F2 determined cytoplasmic localization in chicken cells and this was linked with protein instability. Mitochondrial localization of PB1-F2 resulted in reduced antagonism of an NFκB-dependent promoter. In parallel, mitochondrial localization of PB1-F2 increased the potency of chicken IFN 2 induction antagonism. We suggest that mitochondrial localization of PB1-F2 restricts interaction with cytoplasmic-located IKKß, reducing NFκB-responsive promoter antagonism, but enhances antagonism of the IFN2 promoter through interaction with the mitochondrial adaptor MAVS. Our study highlights the differential mechanisms by which IAV PB1-F2 protein can dampen the avian host innate signalling response.


Subject(s)
Influenza A Virus, H5N1 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/metabolism , Influenza in Birds/immunology , Interferon-beta/genetics , NF-kappa B/genetics , Poultry Diseases/genetics , Viral Proteins/metabolism , Animals , Chickens , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/genetics , Influenza in Birds/virology , Interferon-beta/immunology , NF-kappa B/immunology , Poultry Diseases/immunology , Poultry Diseases/virology , Promoter Regions, Genetic , Viral Proteins/genetics
16.
J Gen Virol ; 100(7): 1079-1092, 2019 07.
Article in English | MEDLINE | ID: mdl-31169484

ABSTRACT

Candidate vaccine viruses (CVVs) for seasonal influenza A virus are made by reassortment of the antigenic virus with an egg-adapted strain, typically A/Puerto Rico/8/34 (PR8). Many 2009 A(H1N1) pandemic (pdm09) high-growth reassortants (HGRs) selected this way contain pdm09 segment 2 in addition to the antigenic genes. To investigate this, we made CVV mimics by reverse genetics (RG) that were either 6 : 2 or 5 : 3 reassortants between PR8 and two pdm09 strains, A/California/7/2009 (Cal7) and A/England/195/2009, differing in the source of segment 2. The 5 : 3 viruses replicated better in MDCK-SIAT1 cells than the 6 : 2 viruses, but the 6 : 2 CVVs gave higher haemagglutinin (HA) antigen yields from eggs. This unexpected phenomenon reflected temperature sensitivity conferred by pdm09 segment 2, as the egg HA yields of the 5 : 3 viruses improved substantially when viruses were grown at 35 °C compared with 37.5 °C, whereas the 6 : 2 virus yields did not. However, the authentic 5 : 3 pdm09 HGRs, X-179A and X-181, were not markedly temperature sensitive despite their PB1 sequences being identical to that of Cal7, suggesting compensatory mutations elsewhere in the genome. Sequence comparisons of the PR8-derived backbone genes identified polymorphisms in PB2, NP, NS1 and NS2. Of these, PB2 N701D affected the temperature dependence of viral transcription and, furthermore, improved and drastically reduced the temperature sensitivity of the HA yield from the 5 : 3 CVV mimic. We conclude that the HA yield of pdm09 CVVs can be affected by an epistatic interaction between PR8 PB2 and pdm09 PB1, but that this can be minimized by ensuring that the backbones used for vaccine manufacture in eggs contain PB2 701D.


Subject(s)
Epistasis, Genetic , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/growth & development , Influenza, Human/virology , Viral Proteins/genetics , Animals , Chick Embryo , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza Vaccines/genetics , Influenza Vaccines/metabolism , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Reassortant Viruses/metabolism , Temperature , Viral Proteins/metabolism
17.
PLoS Biol ; 14(8): e1002530, 2016 08.
Article in English | MEDLINE | ID: mdl-27509052

ABSTRACT

There is a need for formalised diagrams that both summarise current biological pathway knowledge and support modelling approaches that explain and predict their behaviour. Here, we present a new, freely available modelling framework that includes a biologist-friendly pathway modelling language (mEPN), a simple but sophisticated method to support model parameterisation using available biological information; a stochastic flow algorithm that simulates the dynamics of pathway activity; and a 3-D visualisation engine that aids understanding of the complexities of a system's dynamics. We present example pathway models that illustrate of the power of approach to depict a diverse range of systems.


Subject(s)
Algorithms , Computational Biology/methods , Models, Biological , Signal Transduction , Animals , Computer Simulation , Humans , Reproducibility of Results
18.
BMC Biotechnol ; 18(1): 82, 2018 12 29.
Article in English | MEDLINE | ID: mdl-30594166

ABSTRACT

BACKGROUND: The global market for protein drugs has the highest compound annual growth rate of any pharmaceutical class but their availability, especially outside of the US market, is compromised by the high cost of manufacture and validation compared to traditional chemical drugs. Improvements in transgenic technologies allow valuable proteins to be produced by genetically-modified animals; several therapeutic proteins from such animal bioreactors are already on the market after successful clinical trials and regulatory approval. Chickens have lagged behind mammals in bioreactor development, despite a number of potential advantages, due to the historic difficulty in producing transgenic birds, but the production of therapeutic proteins in egg white of transgenic chickens would substantially lower costs across the entire production cycle compared to traditional cell culture-based production systems. This could lead to more affordable treatments and wider markets, including in developing countries and for animal health applications. RESULTS: Here we report the efficient generation of new transgenic chicken lines to optimize protein production in eggs. As proof-of-concept, we describe the expression, purification and functional characterization of three pharmaceutical proteins, the human cytokine interferon α2a and two species-specific Fc fusions of the cytokine CSF1. CONCLUSION: Our work optimizes and validates a transgenic chicken system for the cost-effective production of pure, high quality, biologically active protein for therapeutics and other applications.


Subject(s)
Animals, Genetically Modified/genetics , Biotechnology/methods , Chickens/genetics , Cytokines/genetics , Animals , Animals, Genetically Modified/metabolism , Bioreactors/economics , Biotechnology/economics , Chickens/metabolism , Cytokines/economics , Cytokines/metabolism , Humans , Interferon-alpha/economics , Interferon-alpha/genetics , Interferon-alpha/metabolism , Macrophage Colony-Stimulating Factor/economics , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Recombinant Proteins/economics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28515301

ABSTRACT

Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export.IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as previously identified roles in antagonizing the innate immune defenses of the cell and directly upregulating translation of viral mRNAs, it also promotes the nuclear export of the viral late gene mRNAs by acting as an adaptor between the viral mRNAs and the cellular mRNA nuclear export machinery.


Subject(s)
Active Transport, Cell Nucleus , Influenza A Virus, H1N1 Subtype/physiology , RNA, Messenger/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Cell Line , Humans , In Situ Hybridization, Fluorescence
20.
Nature ; 484(7395): 519-23, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22446628

ABSTRACT

The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins' in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 'Spanish' influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.


Subject(s)
Influenza A virus/pathogenicity , Membrane Proteins/metabolism , Orthomyxoviridae Infections/mortality , RNA-Binding Proteins/metabolism , Alleles , Amino Acid Sequence , Animals , Cytokines/immunology , England/epidemiology , Gene Deletion , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A virus/classification , Influenza A virus/growth & development , Influenza B virus/classification , Influenza B virus/growth & development , Influenza B virus/pathogenicity , Influenza, Human/complications , Influenza, Human/epidemiology , Influenza, Human/mortality , Influenza, Human/virology , Leukocytes/immunology , Lung/pathology , Lung/virology , Membrane Proteins/chemistry , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/pathology , Pneumonia, Viral/etiology , Pneumonia, Viral/pathology , Pneumonia, Viral/prevention & control , Polymorphism, Single Nucleotide/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Scotland/epidemiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL