Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Phys Rev Lett ; 128(18): 183202, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594086

ABSTRACT

Investigation on structures in the high-harmonic spectrum has provided profuse information of molecular structure and dynamics in intense laser fields, based on which techniques of molecular ultrafast dynamics imaging have been developed. Combining ab initio calculations and experimental measurements on the high-harmonic spectrum of the CO_{2} molecule, we find a novel dip structure in the low-energy region of the harmonic spectrum which is identified as fingerprints of participation of deeper-lying molecular orbitals in the process and decodes the underlying attosecond multichannel coupling dynamics. Our work sheds new light on the ultrafast dynamics of molecules in intense laser fields.

2.
Phys Rev Lett ; 129(2): 023001, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35867441

ABSTRACT

How the neighbor effect plays its role in the fragmentation of molecular clusters attracts great attention for physicists and chemists. Here, we study this effect in the fragmentation of N_{2}O dimer by performing three-body coincidence measurements on the femtosecond timescale. Rotations of bound N_{2}O^{+} triggered by neutral or ionic neighbors are tracked. The forbidden dissociation path between B^{2}Π and ^{4}Π is opened by the spin-exchange effect due to the existence of neighbor ions, leading to a new channel of N_{2}O^{+}→NO+N^{+} originating from B^{2}Π. The formation and dissociation of the metastable product N_{3}O_{2}^{+} from two ion-molecule reaction channels are tracked in real time, and the corresponding trajectories are captured. Our results demonstrate a significant and promising step towards the understanding of neighbor roles in the reactions within clusters.

3.
Opt Express ; 29(17): 27171-27180, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615138

ABSTRACT

Förster resonance energy transfer (FRET) and Auger recombination in quantum dots (QDs)-molecules system are important mechanisms for affecting performance of their optoelectronic and photosynthesis devices. However, exploring an effective strategy to promote FRET and suppress Auger recombination simultaneously remains a daunting challenge. Here, we report that FRET process is promoted and Auger recombination process is suppressed in CdTe/CdS QDs-Rhodamine101 (Rh101) molecules system upon compression. The greatly improved FRET is attributed to the shortened donor-acceptor distance and increased the number of molecules attached to QDs induced by pressure. The reduced Auger recombination is ascribed to the formation of an alloy layer at the core/shell interface. The FRET can occur 70 times faster than Auger recombination under a high pressure of 0.9 GPa. Our findings demonstrate that high pressure is a robust tool to boost FRET and simultaneously suppress Auger recombination, and provides a new route to QDs-molecules applications.

4.
Phys Rev Lett ; 126(10): 103202, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784162

ABSTRACT

The novel strong field autoionization (SFAI) dynamics is identified and investigated by channel-resolved angular streaking measurements of two electrons and two ions for the double-ionized CO. Comparing with the laser-assisted autoionization calculations, we demonstrate the electrons from SFAI are generated from the field-induced decay of the autoionizing state with a following acceleration in the laser fields. The energy-dependent photoelectron angular distributions further reveal that the subcycle ac-Stark effect modulates the lifetime of the autoionizing state and controls the emission of SFAI electrons in molecular frame. Our results pave the way to control the emission of resonant high-harmonic generation and trace the electron-electron correlation and electron-nuclear coupling by strong laser fields. The lifetime modulation of quantum systems in the strong laser field has great potential for quantum manipulation of chemical reactions and beyond.

5.
Opt Express ; 27(22): 31629-31643, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684393

ABSTRACT

Neutral atoms have been observed to survive intense laser pulses in high Rydberg states with surprisingly large probability. Only with this Rydberg-state excitation (RSE) included is the picture of intense-laser-atom interaction complete. Various mechanisms have been proposed to explain the underlying physics. However, neither one can explain all the features observed in experiments and in time-dependent Schrödinger equation (TDSE) simulations. Here we propose a fully quantum-mechanical model based on the strong-field approximation (SFA). It well reproduces the intensity dependence of RSE obtained by the TDSE, which exhibits a series of modulated peaks. They are due to recapture of the liberated electron and the fact that the pertinent probability strongly depends on the position and the parity of the Rydberg state. We also present measurements of RSE in xenon at 800 nm, which display the peak structure consistent with the calculations.

6.
Opt Express ; 27(16): A995-A1003, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510488

ABSTRACT

The excited-state carrier dynamics of lead halide perovskites play a critical role in their photoelectric properties, and are greatly affected by lattice structural changes. In this work, the carrier dynamics of all-inorganic CsPbBr3 peroveskite, as a function of pressure, are investigated using in situ high-pressure femtosecond transient absorption spectroscopic experiments. Compression is found to drive crystal structural evolution, thereby markedly changing the behavior of charge carriers in CsPbBr3. Before the phase transition, simultaneous prolonging of the carrier relaxation and Auger recombination is achieved alongside a narrowing in the bandgap. The results favor improved efficiency and photovoltaic performance.

7.
Phys Rev Lett ; 122(1): 013203, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012706

ABSTRACT

Elliptically polarized laser pulses (EPLPs) are widely applied in many fields of ultrafast sciences, but the ellipticity (ϵ) has never been in situ measured in the interaction zone of the laser focus. In this Letter, we propose and realize a robust scheme to retrieve the ϵ by temporally overlapping two identical counterrotating EPLPs. The combined linearly electric field is coherently controlled to ionize Xe atoms by varying the phase delay between the two EPLPs. The electron spectra of the above-threshold ionization and the ion yield are sensitively modulated by the phase delay. We demonstrate that these modulations can be used to accurately determine ϵ of the EPLP. We show that the present method is highly reliable and is applicable in a wide range of laser parameters. The accurate retrieval of ϵ offers a better characterization of a laser pulse, promising a more delicate and quantitative control of the subcycle dynamics in many strong field processes.

8.
J Phys Chem A ; 122(43): 8427-8432, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30339005

ABSTRACT

Strong field double ionization that triggers the chemical bond rearrangement of CH3Cl is investigated by impulsive control of the alignment of molecules. The alignment and laser intensity dependent H2+ and H3+ yields in linearly polarized femtosecond laser have been measured, and the obtained data show that the maximum signal of H2+ appears at the laser polarization parallel to the C-Cl axis of molecules and H3+ species are more likely to eject at the laser polarization parallel to the C-Cl axis at low laser intensity while the H3+ signal peaks at laser polarization perpendicular to the C-Cl axis at high laser intensity. The measurements indicate that electrons from HOMO - 1 and HOMO - 2 orbitals have been ionized for the generation of bond rearrangement at different laser intensity. Our results demonstrate the importance of multielectron effects and also provide an effective control method in the process of chemical bond rearrangement of the molecules in strong laser fields.

9.
J Phys Chem A ; 121(35): 6547-6553, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28814073

ABSTRACT

Strong field sequential ionization of symmetric-top CH3I molecules is studied experimentally by using a combined method of femtosecond laser-induced impulsive alignment and time-of-flight mass spectrometry. Both alignment- and angular-dependent ion yields have been measured, and the sequential ionization of a multielectron has been discussed. It is found that the maximum ionization occurs when the polarization of probe laser is perpendicular to the internuclear axis of molecules, and the signal of fragment ion peaks at the polarization of the probe laser is parallel to the internuclear axis of molecules. The angular distribution of ions indicated that ionization of π-type orbitals corresponds to generation of charged parent ions and ionization of σ-type orbitals corresponds to generation of fragment ions. The sequential release of multielectrons for Coulomb explosion channels is studied by analysis of the time evolutions of multicharged In+ (n = 1-4) signals.

10.
J Phys Chem A ; 121(4): 777-783, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28067509

ABSTRACT

Rotational dynamics of quantum state selected and unselected CH3I molecules in intense femtosecond laser fields has been studied. The orientation and alignment evolutions are derived from a pump-probe measurement and in good agreement with the numerical results from the time-dependent Schrödinger equation (TDSE) calculation. The different rotational transitions through nonresonant Raman process have been assigned from the Fourier analysis of the orientation and alignment revivals. These revivals are derived from a pump-probe measurement and in good agreement with the numerical results from the TDSE calculation. For the molecules in rotational state |1, ±1, ∓1⟩, the transitions can be assigned to ΔJ = ±1, ±2, while for thermally populated molecules, the transitions are ΔJ = ±2. Our results illustrate that the orientation and alignment revivals of the rotational quantum-state-selected molecules give a deep insight into the rotational excitation pathways for the transition of different rotational states of molecules in ultrafast laser fields.

11.
J Chem Phys ; 146(24): 244305, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28668031

ABSTRACT

We investigated the ultrafast proton migration and the Coulomb explosion (CE) dynamics of methyl chloride (CH3Cl) in intense femtosecond laser fields at the wavelengths of 800 nm (5.5 × 1014 W/cm2) and 400 nm (4 × 1014 W/cm2), respectively. Various fragment channels from molecular dication and trication were observed by coincidence momentum imaging through the measurement of their kinetic energy releases (KERs). The proton migration from different charged parent ions was analyzed from the obtained KER distributions. For the direct CE channel of CH3+ + Cl+ and CH3+ + Cl2+, the contribution of multiply excited electronic states and multicharged states is identified. In addition, the measurements of relative yields of the fragmentation channel at different laser wavelengths provide a selective control of proton migration for CH3Cl molecules in intense laser fields.

12.
Phys Chem Chem Phys ; 18(5): 3838-45, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26763126

ABSTRACT

Ultrafast carrier relaxation dynamics in fluorescent carbon nanodots is investigated by femtosecond transient absorption spectra at different pH environments so as to understand the mechanism of fluorescence for the first time. Utilizing multi-wavelength global analysis to fit the measured signal via a sequential model, four different relaxation channels are found, which are attributed to electron-electron scattering and surface state trapping, optical phonon scattering, acoustic phonon scattering and electron-hole recombination respectively. The results reveal that the surface states are mainly composed of different oxygen-containing functional groups (epoxy, carbonyl and carboxyl) and carbon atoms on the edge of the carbon backbone and can effectively trap a large number of photo-excited electrons. The deprotonation of carboxyl groups at high pH will change the distribution of π electron cloud density between the carbon backbone and surface states and consequently, compared with the excited electrons in the acidic and neutral environments, those in the alkaline environment can be more easily trapped by the surface within 1 ps, thereby giving rise to stronger fluorescence emission.

13.
Phys Chem Chem Phys ; 17(6): 4067-75, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25589218

ABSTRACT

A modified quasi-quantum treatment (MQQT) of molecular scattering has been developed to account for the softness of the repulsive part of the anisotropic atom-molecule PES. A contour of the PES is chosen such that the barrier height is just large enough to reflect the incoming kinetic energy, directed anti-parallel to the hard shell normal at the site of impact. The resulting rotationally inelastic quantum state resolved DCSs and ICSs of He + NO(X) at Ecol = 508 cm(-1) are compared to those obtained from regular QQT and from quantum mechanically exact calculations performed on the full highest quality ab initio Vsum PES. The MQQT parity changing DCSs for Δj ≤ 4 exhibit much better agreement with the QM DCSs than is obtained using regular QQT, particularly in the forward scattered direction. The improvements upon the remaining MQQT DCSs with respect to the regular QQT were minor, due to the near incompressible hard shell character of the n ≠ 1 or 3 anisotropic Legendre polynomial terms of the PES.

14.
Phys Chem Chem Phys ; 17(37): 24121-8, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26314900

ABSTRACT

Hexapole state selection is used to prepare CH3I molecules in the |JKM〉 = |1±1∓1〉 state. The molecules are aligned in a strong 800 nm laser field, which is linearly polarised perpendicular to the weak static extraction field E of the time of flight setup. The molecules are subsequently ionised by a second time delayed probe laser pulse. It will be shown that in this geometry at high enough laser intensities the Newton sphere has sufficient symmetry to apply the inverse Abel transformation to reconstruct the three dimensional distribution from the projected ion image. The laser induced controllable alignment was found to have the upper and lower extreme values of 〈P2(cos θ)〉 = 0.7 for the aligned molecule and -0.1 for the anti-aligned molecule, coupled to 〈P4(cos θ)〉 between 0.3 and 0.0. The method to extract the alignment parameters 〈P2(cos θ)〉 and 〈P4(cos θ)〉 directly from the velocity map ion images will be discussed.

15.
Phys Chem Chem Phys ; 15(15): 5620-35, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23471220

ABSTRACT

The quasi-quantum treatment (QQT) (Gijsbertsen et al., J. Am. Chem. Soc., 2006, 128, 8777) provides a physically compelling framework for the evaluation of rotationally inelastic scattering, including the differential cross sections (DCS). In this work the QQT framework is extended to treat the DCS in the classically forbidden region as well as the classically allowed region. Most importantly, the QQT is applied to the collision energy dependence of the angular distributions of these DCSs. This leads to an analytical formalism that reveals a scaling relationship between the DCS calculated at a particular collision energy and the DCS at other collision energies. This scaling is shown to be exact for QM calculated or experimental DCSs if the magnitude of the (kinematic apse frame) underlying scattering amplitude depends solely on the projection of the incoming momentum vector onto the kinematic apse vector. The QM DCSs of the NO(X)-He collision system were found to obey this scaling law nearly perfectly for energies above 63 meV. The mathematical derivation is accompanied by a mechanistic description of the Feynman paths that contribute to the scattering amplitude in the classically allowed and forbidden regions, and the nature of the momentum transfer during the collision process. This scaling relationship highlights the nature of (and limits to) the information that is obtainable from the collision-energy dependence of the DCS, and allows a description of the relevant angular range of the DCSs that embodies this information.

16.
Nat Commun ; 14(1): 4951, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587115

ABSTRACT

Neutral H2 formation via intramolecular hydrogen migration in hydrocarbon molecules plays a vital role in many chemical and biological processes. Here, employing cold target recoil ion momentum spectroscopy (COLTRIMS) and pump-probe technique, we find that the non-adiabatic coupling between the ground and excited ionic states of ethane through conical intersection leads to a significantly high yield of neutral H2 fragment. Based on the analysis of fingerprints that are sensitive to orbital symmetry and electronic state energies in the photoelectron momentum distributions, we tag the initial electronic population of both the ground and excited ionic states and determine the branching ratios of H2 formation channel from those two states. Incorporating theoretical simulation, we established the timescale of the H2 formation to be ~1300 fs. We provide a comprehensive characterization of H2 formation in ionic states of ethane mediated by conical intersection and reveals the significance of non-adiabatic coupling dynamics in the intramolecular hydrogen migration.

17.
Nat Commun ; 14(1): 5420, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37669964

ABSTRACT

Real-time imaging of transient structure of the electronic excited state is fundamentally critical to understand and control ultrafast molecular dynamics. The ejection of electrons from the inner-shell and valence level can lead to the population of different excited states, which trigger manifold ultrafast relaxation processes, however, the accurate imaging of such electronic state-dependent structural evolutions is still lacking. Here, by developing the laser-induced electron recollision-assisted Coulomb explosion imaging approach and molecular dynamics simulations, snapshots of the vibrational wave-packets of the excited (A) and ground states (X) of D2O+ are captured simultaneously with sub-10 picometre and few-femtosecond precision. We visualise that θDOD and ROD are significantly increased by around 50∘ and 10 pm, respectively, within approximately 8 fs after initial ionisation for the A state, and the ROD further extends 9 pm within 2 fs along the ground state of the dication in the present condition. Moreover, the ROD can stretch more than 50 pm within 5 fs along autoionisation state of dication. The accuracies of the results are limited by the simulations. These results provide comprehensive structural information for studying the fascinating molecular dynamics of water, and pave the way towards to make a movie of excited state-resolved ultrafast molecular dynamics and light-induced chemical reaction.

18.
J Phys Chem Lett ; 13(1): 136-141, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34962404

ABSTRACT

Increasing aggregation induced emission (AIE) efficiency is of fundamental interest as it directly reflects performance of multitwist-based luminogens in bioimaging and in the photoelectric device field. However, an effective and convenient methodology to increase AIE efficiency significantly remains a challenge. Here, we present a general strategy to increase AIE efficiency of multitwist-based luminogens by pressure, resulting in a 120.1-fold enhancement of the AIE intensity of tris[4-(diethylamino)phenyl]amine (TDAPA) under high pressure compared to that of the traditional method. AIE efficiency of TDAPA increases from 0.5% to 46.1% during compression. Experimental and theoretical investigations reveal that the AIE efficiency enhancement originates from intramolecular vibration and the twisted intramolecular charge transfer are suppressed under high pressure. High AIE efficiency under high pressure provides an important inspiration for improving performance of multitwist-based luminogens in the lighting and biomedical fields.

19.
Nat Commun ; 13(1): 5335, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36088449

ABSTRACT

Intermolecular interactions involving aromatic rings are ubiquitous in biochemistry and they govern the properties of many organic materials. Nevertheless, our understanding of the structures and dynamics of aromatic clusters remains incomplete, in particular for systems beyond the dimers, despite their high presence in many macromolecular systems such as DNA and proteins. Here, we study the fragmentation dynamics of benzene trimer that represents a prototype of higher-order aromatic clusters. The trimers are initially ionized by electron-collision with the creation of a deep-lying carbon 2s-1 state or one outer-valence and one inner-valence vacancies at two separate molecules. The system can thus relax via ultrafast intermolecular decay mechanisms, leading to the formation of C[Formula: see text]C[Formula: see text]C[Formula: see text] trications and followed by a concerted three-body Coulomb explosion. Triple-coincidence ion momentum spectroscopy, accompanied by ab-initio calculations and further supported by strong-field laser experiments, allows us to elucidate the details on the fragmentation dynamics of benzene trimers.


Subject(s)
Benzene , Electrons , Chemical Phenomena , DNA
20.
J Comput Chem ; 32(15): 3264-8, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-21953559

ABSTRACT

The adsorption of six free radicals (FRs) respectively on a graphene fragment was studied using a density functional tight-binding method with the inclusion of an empirical dispersion term in total energy. The results indicate that the different interaction paths between the FRs and the graphene lead to different forms of physical (PA) or chemical adsorptions (CA). The CA appears only in the condition where some of the nonhydrogen atoms are closer to the graphene, with the deformation occurring in the latter. The charge transfer increases with the increase in adsorption energy in every FR-graphene system. Although the deformation in the graphene is negligible in all PA cases, the FR is closer to the graphene and the graphene deformation is clearer in all CA cases, with all atomic displacements being larger than 0.1 Å. Our findings are useful not only for FR scavenging but also for studying the interaction between general molecules and material surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL