ABSTRACT
Presentation of the variant antigen, Plasmodium falciparum erythrocyte membrane protein 1 (EMP1), at knob-like protrusions on the surface of infected red blood cells, underpins the parasite's pathogenicity. Here we describe a protein PF3D7_0301700 (PTP7), that functions at the nexus between the intermediate trafficking organelle, the Maurer's cleft, and the infected red blood cell surface. Genetic disruption of PTP7 leads to accumulation of vesicles at the Maurer's clefts, grossly aberrant knob morphology, and failure to deliver EMP1 to the red blood cell surface. We show that an expanded low complexity sequence in the C-terminal region of PTP7, identified only in the Laverania clade of Plasmodium, is critical for efficient virulence protein trafficking.
Subject(s)
Plasmodium falciparum , Protozoan Proteins , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Organelles/metabolism , Plasmodium falciparum/metabolism , Protein Transport , Protozoan Proteins/genetics , Protozoan Proteins/metabolismABSTRACT
Transmission blocking interventions can stop malaria parasite transmission from mosquito to human by inhibiting parasite infection in mosquitos. One of the most advanced candidates for a malaria transmission blocking vaccine is Pfs230. Pfs230 is the largest member of the 6-cysteine protein family with 14 consecutive 6-cysteine domains and is expressed on the surface of gametocytes and gametes. Here, we present the crystal structure of the first two 6-cysteine domains of Pfs230. We identified high affinity Pfs230-specific nanobodies that recognized gametocytes and bind to distinct sites on Pfs230, which were isolated from immunized alpacas. Using two non-overlapping Pfs230 nanobodies, we show that these nanobodies significantly blocked P. falciparum transmission and reduced the formation of exflagellation centers. Crystal structures of the transmission blocking nanobodies with the first 6-cysteine domain of Pfs230 confirm that they bind to different epitopes. In addition, these nanobodies bind to Pfs230 in the absence of the prodomain, in contrast with the binding of known Pfs230 transmission blocking antibodies. These results provide additional structural insight into Pfs230 domains and elucidate a mechanism of action of transmission blocking Pfs230 nanobodies.
Subject(s)
Malaria , Single-Domain Antibodies , Animals , Humans , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Antigens, Protozoan/chemistry , Cysteine , Antibodies, ProtozoanABSTRACT
BACKGROUND: There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. METHODS: The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naïve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 × 105 (2 subjects), or 3 × 106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). RESULTS: None of the subjects who were administered with 1800 or 1.8 × 105 parasites developed parasitemia; 3/4 subjects administered 3× 106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. CONCLUSIONS: This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrp- strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (number: ACTRN12617000824369 ; date: 06 June 2017).
Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Malaria , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Australia , Humans , Malaria/drug therapy , Malaria Vaccines/adverse effects , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Male , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Vaccine Development , Vaccines, Attenuated/adverse effectsABSTRACT
Plasmodium falciparum mediates adhesion of infected red blood cells (RBCs) to blood vessel walls by assembling a multi-protein complex at the RBC surface. This virulence-mediating structure, called the knob, acts as a scaffold for the presentation of the major virulence antigen, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1). In this work we developed correlative STochastic Optical Reconstruction Microscopy-Scanning Electron Microscopy (STORM-SEM) to spatially and temporally map the delivery of the knob-associated histidine-rich protein (KAHRP) and PfEMP1 to the RBC membrane skeleton. We show that KAHRP is delivered as individual modules that assemble in situ, giving a ring-shaped fluorescence profile around a dimpled disk that can be visualized by SEM. Electron tomography of negatively-stained membranes reveals a previously observed spiral scaffold underpinning the assembled knobs. Truncation of the C-terminal region of KAHRP leads to loss of the ring structures, disruption of the raised disks and aberrant formation of the spiral scaffold, pointing to a critical role for KAHRP in assembling the physical knob structure. We show that host cell actin remodeling plays an important role in assembly of the virulence complex, with cytochalasin D blocking knob assembly. Additionally, PfEMP1 appears to be delivered to the RBC membrane, then inserted laterally into knob structures.
Subject(s)
Erythrocyte Membrane/parasitology , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Peptides/metabolism , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Humans , Malaria, Falciparum/metabolism , Microscopy, Electron, Scanning , Peptides/chemistry , Protozoan Proteins/chemistry , VirulenceABSTRACT
Plasmodium parasites invade and multiply inside red blood cells (RBC). Through a cycle of maturation, asexual replication, rupture and release of multiple infective merozoites, parasitised RBC (pRBC) can reach very high numbers in vivo, a process that correlates with disease severity in humans and experimental animals. Thus, controlling pRBC numbers can prevent or ameliorate malaria. In endemic regions, circulating parasite-specific antibodies associate with immunity to high parasitemia. Although in vitro assays reveal that protective antibodies could control pRBC via multiple mechanisms, in vivo assessment of antibody function remains challenging. Here, we employed two mouse models of antibody-mediated immunity to malaria, P. yoelii 17XNL and P. chabaudi chabaudi AS infection, to study infection-induced, parasite-specific antibody function in vivo. By tracking a single generation of pRBC, we tested the hypothesis that parasite-specific antibodies accelerate pRBC clearance. Though strongly protective against homologous re-challenge, parasite-specific IgG did not alter the rate of pRBC clearance, even in the presence of ongoing, systemic inflammation. Instead, antibodies prevented parasites progressing from one generation of RBC to the next. In vivo depletion studies using clodronate liposomes or cobra venom factor, suggested that optimal antibody function required splenic macrophages and dendritic cells, but not complement C3/C5-mediated killing. Finally, parasite-specific IgG bound poorly to the surface of pRBC, yet strongly to structures likely exposed by the rupture of mature schizonts. Thus, in our models of humoral immunity to malaria, infection-induced antibodies did not accelerate pRBC clearance, and instead co-operated with splenic phagocytes to block subsequent generations of pRBC.
Subject(s)
Malaria/immunology , Malaria/metabolism , Plasmodium/growth & development , Animals , Antibodies, Protozoan/metabolism , Disease Models, Animal , Erythrocytes/microbiology , Erythrocytes/physiology , Humans , Mice , Parasites , Phagocytes , Plasmodium/metabolism , Plasmodium/pathogenicity , Plasmodium chabaudi/immunology , Plasmodium chabaudi/pathogenicity , Plasmodium yoelii/immunology , Plasmodium yoelii/pathogenicityABSTRACT
The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block-face scanning electron microscopy to explore the topography of P. knowlesi-infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi-infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python-based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi-infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.
Subject(s)
Erythrocyte Membrane/metabolism , Erythrocytes/parasitology , Plasmodium knowlesi/ultrastructure , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Erythrocyte Membrane/ultrastructure , Erythrocytes/cytology , Erythrocytes/ultrastructure , Hemoglobins/metabolism , Host-Parasite Interactions , Humans , Merozoites/ultrastructure , Microscopy, Electron, Scanning , Osmotic Pressure , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Plasmodium knowlesi/growth & development , Plasmodium knowlesi/pathogenicity , Schizonts/ultrastructure , Trophozoites/ultrastructure , Vacuoles/metabolism , Vacuoles/ultrastructureABSTRACT
Transmission of malaria parasites relies on the formation of a specialized blood form called the gametocyte. Gametocytes of the human pathogen, Plasmodium falciparum, adopt a crescent shape. Their dramatic morphogenesis is driven by the assembly of a network of microtubules and an underpinning inner membrane complex (IMC). Using super-resolution optical and electron microscopies we define the ultrastructure of the IMC at different stages of gametocyte development. We characterize two new proteins of the gametocyte IMC, called PhIL1 and PIP1. Genetic disruption of PhIL1 or PIP1 ablates elongation and prevents formation of transmission-ready mature gametocytes. The maturation defect is accompanied by failure to form an enveloping IMC and a marked swelling of the digestive vacuole, suggesting PhIL1 and PIP1 are required for correct membrane trafficking. Using immunoprecipitation and mass spectrometry we reveal that PhIL1 interacts with known and new components of the gametocyte IMC.
Subject(s)
Microtubules/metabolism , Plasmodium falciparum/growth & development , Sexual Development/physiology , Animals , Microscopy, Electron/methods , Microtubules/ultrastructure , Plasmodium falciparum/ultrastructure , Protein TransportABSTRACT
The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer's clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability.
Subject(s)
Erythrocyte Deformability , Erythrocytes/ultrastructure , Life Cycle Stages , Microtubules/ultrastructure , Models, Biological , Plasmodium falciparum/ultrastructure , Actins/ultrastructure , Computer Simulation , Cytoskeleton/ultrastructure , Spectrin/ultrastructureABSTRACT
During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as "knobs," introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24-48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies.
Subject(s)
Erythrocyte Membrane/parasitology , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum , Computer Simulation , Cytoskeleton/chemistry , Erythrocyte Count , Humans , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Shear Strength , Stress, MechanicalABSTRACT
The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob-associated histidine-rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether-like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α-helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.
Subject(s)
Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Virulence Factors/chemistry , Virulence Factors/metabolism , CD36 Antigens/metabolism , DNA, Protozoan , Erythrocyte Membrane/metabolism , Erythrocytes/parasitology , Gene Knockdown Techniques , Humans , Mutation , Plasmodium falciparum/genetics , Protein Structure, Tertiary , Protein Transport , Proteins/chemistry , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Repetitive Sequences, Nucleic Acid , Virulence Factors/geneticsABSTRACT
Infection with the apicomplexan parasite Plasmodium falciparum is a major cause of morbidity and mortality worldwide. One of the striking features of this parasite is its ability to remodel and decrease the deformability of host red blood cells, a process that contributes to disease. To further understand the virulence of Pf we investigated the biochemistry and function of a putative Pf S33 proline aminopeptidase (PfPAP). Unlike other P. falciparum aminopeptidases, PfPAP contains a predicted protein export element that is non-syntenic with other human infecting Plasmodium species. Characterization of PfPAP demonstrated that it is exported into the host red blood cell and that it is a prolyl aminopeptidase with a preference for N-terminal proline substrates. In addition genetic deletion of this exopeptidase was shown to lead to an increase in the deformability of parasite-infected red cells and in reduced adherence to the endothelial cell receptor CD36 under flow conditions. Our studies suggest that PfPAP plays a role in the rigidification and adhesion of infected red blood cells to endothelial surface receptors, a role that may make this protein a novel target for anti-disease interventions strategies.
Subject(s)
Aminopeptidases/metabolism , Erythrocyte Deformability/physiology , Plasmodium falciparum/enzymology , Amino Acid Sequence , Aminopeptidases/chemistry , Aminopeptidases/genetics , Aminopeptidases/immunology , Antibodies, Protozoan/immunology , Blotting, Northern , Blotting, Western , Cell Adhesion/physiology , Elasticity , Erythrocyte Membrane/genetics , Erythrocyte Membrane/physiology , Erythrocytes/parasitology , Gene Knockout Techniques , Humans , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Plasmodium falciparum/genetics , RNA, Protozoan/chemistry , Real-Time Polymerase Chain Reaction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sequence Alignment , TransfectionABSTRACT
BACKGROUND: Plasmodium falciparum sexual development plays a fundamental role in the transmission and spread of malaria. The ability to generate gametocytes can be lost during culture in vitro, often associated with the loss of a subtelomeric region of chromosome 9. Gametocytogenesis starts with erythrocyte invasion by a sexually committed merozoite, but the first available specific marker of sexual differentiation appears only from 24 h post invasion. METHODS: Specific antibodies and gene fusions were produced to study the timing of expression and the sub-cellular localization of the P. falciparum Gametocyte EXported Protein-5 (PfGEXP5), encoded in the subtelomeric region of chromosome 9. Expression patterns were examined in wild-type parasites and in parasite lines mutated in the Apetala2-G (AP2-G) transcription factor, governing a cascade of early sexual stage specific genes. RESULTS: PfGEXP5 is highly expressed in early sexual stages and it is actively exported to the infected erythrocyte cytoplasm from as early as 14 h post-invasion in haemozoin-free, ring stage-like parasites. The pattern of PfGEXP5 expression and export is similar in wild-type parasites and in independent AP2-G defective parasite lines unable to produce gametocytes. CONCLUSIONS: PfGEXP5 represents the earliest post-invasion sexual stage marker described to date. This provides a tool that can be used to identify sexually committed ring stage parasites in natural infections. This early gametocyte marker would enable the identification and mapping of malaria transmission reservoirs in human populations and the study of gametocyte sequestration dynamics in infected individuals. The fact that regulation of PfGEXP5 does not depend on the AP2-G master regulator of parasite sexual development suggests that, after sexual commitment, differentiation progresses through multiple checkpoints in the early phase of gametocytogenesis.
Subject(s)
Life Cycle Stages/genetics , Plasmodium falciparum/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Cytoplasm/metabolism , Cytoplasm/parasitology , Erythrocytes/parasitology , Gene Expression Regulation , Host-Parasite Interactions/genetics , Humans , Plasmodium falciparum/geneticsABSTRACT
Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.
Subject(s)
Malaria/diagnosis , Nanostructures/chemistry , Plasmodium/isolation & purification , Spectrum Analysis, Raman , Wings, Animal/chemistry , Animals , Butterflies/physiology , Erythrocytes/parasitology , Gold/chemistry , Hemeproteins/analysis , Hemeproteins/chemistry , Humans , Malaria/parasitology , Nanostructures/ultrastructure , Plasmodium/metabolismABSTRACT
Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX. Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth. In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.
Subject(s)
Parasitemia/parasitology , Plasmodium berghei/enzymology , Plasmodium berghei/pathogenicity , Thioredoxins/metabolism , Virulence Factors/metabolism , Animals , Disease Models, Animal , Gene Deletion , Malaria, Cerebral/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Survival Analysis , Thioredoxins/genetics , Virulence , Virulence Factors/geneticsABSTRACT
The most virulent of the human malaria parasites, Plasmodium falciparum, undergoes a remarkable morphological transformation as it prepares itself for sexual reproduction and transmission via mosquitoes. Indeed P. falciparum is named for the unique falciform or crescent shape of the mature sexual stages. Once the metamorphosis is completed, the mature gametocyte releases from sequestration sites and enters the circulation, thus making it accessible to feeding mosquitoes. Early ultrastructural studies showed that gametocyte elongation is driven by the assembly of a system of flattened cisternal membrane compartments underneath the parasite plasma membrane and a supporting network of microtubules. Here we describe the molecular composition and origin of the sub-pellicular membrane complex, and show that it is analogous to the inner membrane complex, an organelle with structural and motor functions that is well conserved across the apicomplexa. We identify novel crosslinking elements that might help stabilize the inner membrane complex during gametocyte development. We show that changes in gametocyte morphology are associated with an increase in cellular deformability and postulate that this enables the gametocytes to circulate in the bloodstream without being detected and removed by the mechanical filtering mechanisms in the spleen of the host.
Subject(s)
Intracellular Membranes/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Actins/metabolism , Cell Membrane/metabolism , Germ Cells/growth & development , Germ Cells/metabolism , Humans , Myosins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolismABSTRACT
New diagnostic modalities for malaria must have high sensitivity and be affordable to the developing world. We report on a method to rapidly detect and quantify different stages of malaria parasites, including ring and gametocyte forms, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) and partial least-squares regression (PLS). The absolute detection limit was found to be 0.00001% parasitemia (<1 parasite/µL of blood; p < 0.008) for cultured early ring stage parasites in a suspension of normal erythrocytes. Future development of universal and robust calibration models can significantly improve malaria diagnoses, leading to earlier detection and treatment of this devastating disease.
Subject(s)
Erythrocytes/parasitology , Plasmodium/isolation & purification , Animals , Multivariate Analysis , Reproducibility of Results , Spectroscopy, Fourier Transform InfraredABSTRACT
In general, the first overtone modes produce weak bands that appear at approximately twice the wavenumber value of the fundamental transitions in vibrational spectra. Here, we report the existence of a series of enhanced non-fundamental bands in resonance Raman (RR) spectra recorded for hemoglobin (Hb) inside the highly concentrated heme environment of the red blood cell (RBC) by exciting with a 514.5 nm laser line. Such bands are most intense when detecting parallel-polarized light. The enhancement is explained through excitonic theory invoking a type C scattering mechanism and bands have been assigned to overtone and combination bands based on symmetry arguments and polarization measurements. By using malaria diagnosis as an example, we demonstrate that combining the non-fundamental and fundamental regions of the RR spectrum improves the sensitivity and diagnostic capability of the technique. The discovery will have considerable implications for the ongoing development of Raman spectroscopy for blood disease diagnoses and monitoring heme perturbation in response to environmental stimuli.
Subject(s)
Erythrocytes/chemistry , Erythrocytes/parasitology , Hemoglobins/analysis , Malaria, Falciparum/diagnosis , Spectrum Analysis, Raman/methods , Heme/analysis , Humans , Lasers , Plasmodium falciparum/isolation & purificationABSTRACT
The human malaria parasite, Plasmodium falciparum, modifies the red blood cells (RBCs) that it infects by exporting proteins to the host cell. One key virulence protein, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1), is trafficked to the surface of the infected RBC, where it mediates adhesion to the vascular endothelium. We have investigated the organization and development of the exomembrane system that is used for PfEMP1 trafficking. Maurer's cleft cisternae are formed early after invasion and proteins are delivered to these (initially mobile) structures in a temporally staggered and spatially segregated manner. Membrane-Associated Histidine-Rich Protein-2 (MAHRP2)-containing tether-like structures are generated as early as 4 h post invasion and become attached to Maurer's clefts. The tether/Maurer's cleft complex docks onto the RBC membrane at ~20 h post invasion via a process that is not affected by cytochalasin D treatment. We have examined the trafficking of a GFP chimera of PfEMP1 expressed in transfected parasites. PfEMP1B-GFP accumulates near the parasite surface, within membranous structures exhibiting a defined ultrastructure, before being transferred to pre-formed mobile Maurer's clefts. Endogenous PfEMP1 and PfEMP1B-GFP are associated with Electron-Dense Vesicles that may be responsible for trafficking PfEMP1 from the Maurer's clefts to the RBC membrane.
Subject(s)
Erythrocytes/parasitology , Plasmodium falciparum/pathogenicity , Protein Transport/physiology , Protozoan Proteins/physiology , Cells, Cultured , Erythrocyte Membrane/parasitology , Erythrocyte Membrane/physiology , Erythrocytes/pathology , Green Fluorescent Proteins , Host-Parasite Interactions/physiology , Humans , In Vitro Techniques , Plasmodium falciparum/physiologyABSTRACT
New methods are needed to rapidly identify malaria parasites in blood smears. The coupling of a Focal Plane Array (FPA) infrared microscope system to a synchrotron light source at IRENI enables rapid molecular imaging at high spatial resolution. The technique, in combination with hyper-spectral processing, enables imaging and diagnosis of early stage malaria parasites at the single cell level in a blood smear. The method relies on the detection of distinct lipid signatures associated with the different stages of the malaria parasite and utilises resonant Mie extended multiplicative scatter correction to pre-process the spectra followed by full bandwidth image deconvolution to resolve the single cells. This work demonstrates the potential of focal plane technology to diagnose single cells in a blood smear. Brighter laboratory based infrared sources, optical refinements and higher sensitive detectors will soon see the emergence of focal plane array imaging in the clinical environment.
Subject(s)
Malaria/diagnosis , Photomicrography , Spectroscopy, Fourier Transform Infrared , Erythrocytes/cytology , Erythrocytes/parasitology , Humans , Image Processing, Computer-Assisted , Malaria/parasitology , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification , Principal Component Analysis , Single-Cell Analysis , Tissue Array AnalysisABSTRACT
Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.