ABSTRACT
RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.
Subject(s)
Caspase 8/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Caspase 3/metabolism , Female , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pedigree , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/geneticsABSTRACT
The increasing incidence of cardiovascular disease (CVD) has led to a significant ongoing need to address this surgically through coronary artery bypass grafting (CABG) and percutaneous coronary interventions (PCI). From this, there continues to be a substantial burden of mortality and morbidity due to complications arising from endothelial damage, resulting in restenosis. Whilst mast cells (MC) have been shown to have a causative role in atherosclerosis and other vascular diseases, including restenosis due to vein engraftment; here, we demonstrate their rapid response to arterial wire injury, recapitulating the endothelial damage seen in PCI procedures. Using wild-type mice, we demonstrate accumulation of MC in the femoral artery post-acute wire injury, with rapid activation and degranulation, resulting in neointimal hyperplasia, which was not observed in MC-deficient KitW-sh/W-sh mice. Furthermore, neutrophils, macrophages, and T cells were abundant in the wild-type mice area of injury but reduced in the KitW-sh/W-sh mice. Following bone-marrow-derived MC (BMMC) transplantation into KitW-sh/W-sh mice, not only was the neointimal hyperplasia induced, but the neutrophil, macrophage, and T-cell populations were also present in these transplanted mice. To demonstrate the utility of MC as a target for therapy, we administered the MC stabilizing drug, disodium cromoglycate (DSCG) immediately following arterial injury and were able to show a reduction in neointimal hyperplasia in wild-type mice. These studies suggest a critical role for MC in inducing the conditions and coordinating the detrimental inflammatory response seen post-endothelial injury in arteries undergoing revascularization procedures, and by targeting the rapid MC degranulation immediately post-surgery with DSCG, this restenosis may become a preventable clinical complication.
Subject(s)
Atherosclerosis , Percutaneous Coronary Intervention , Vascular System Injuries , Animals , Mice , Hyperplasia , Mast Cells , Arteries , Constriction, PathologicABSTRACT
AIMS: With increasing prevalence of heart failure (HF) owing to the ageing population, identification of modifiable risk factors is important. In a mouse model, chronic hypohydration induced by lifelong water restriction promotes cardiac fibrosis. Hypohydration elevates serum sodium. Here, we evaluate the association of serum sodium at middle age as a measure of hydration habits with risk to develop HF. METHODS AND RESULTS: We analysed data from Atherosclerosis Risk in Communities study with middle age enrolment (45-66 years) and 25 years of follow-up. Participants without water balance dysregulation were selected: serum sodium within normal range (135-146Ć¢ĀĀ mmol/L), not diabetic, not obese and free of HF at baseline (N = 11 814). In time-to-event analysis, HF risk was increased by 39% if middle age serum sodium exceeded 143Ć¢ĀĀ mmol/L corresponding to 1% body weight water deficit [hazard ratio 1.39, 95% confidence interval (CI) 1.14-1.70]. In a retrospective case-control analysis performed on 70- to 90-year-old attendees of Visit 5 (N = 4961), serum sodium of 142.5-143Ć¢ĀĀ mmol/L was associated with 62% increase in odds of left ventricular hypertrophy (LVH) diagnosis [odds ratio (OR) 1.62, 95% CI 1.03-2.55]. Serum sodium above 143Ć¢ĀĀ mmol/L was associated with 107% increase in odds of LVH (OR 2.07, 95% CI 1.30-3.28) and 54% increase in odds of HF (OR 1.54, 95% CI 1.06-2.23). As a result, prevalence of HF and LVH was increased among 70- to 90-year-old participants with higher middle age serum sodium. CONCLUSION: Middle age serum sodium above 142Ć¢ĀĀ mmol is a risk factor for LVH and HF. Maintaining good hydration throughout life may slow down decline in cardiac function and decrease prevalence of HF.
Subject(s)
Heart Failure , Animals , Heart Failure/epidemiology , Heart Failure/etiology , Humans , Hypertrophy, Left Ventricular/diagnosis , Mice , Reference Values , Retrospective Studies , Sodium , WaterABSTRACT
OBJECTIVE: Serum sodium concentration is maintained by osmoregulation within normal range of 135 to 145 mmol/L. Previous analysis of data from the ARIC study (Atherosclerosis Risk in Communities) showed association of serum sodium with the 10-year risk scores of coronary heart disease and stroke. Current study evaluated the association of within-normal-range serum sodium with cardiovascular risk factors. APPROACH AND RESULTS: Only participants who did not take cholesterol or blood pressure medications and had sodium within normal 135 to 145 mmol/L range were included (n=8615), and the cohort was stratified based on race, sex, and smoking status. Multiple linear regression analysis of data from ARIC study was performed, with adjustment for age, blood glucose, insulin, glomerular filtration rate, body mass index, waist to hip ratio, and calorie intake. The analysis showed positive associations with sodium of total cholesterol, low-density lipoprotein cholesterol, and total cholesterol to high-density lipoprotein cholesterol ratio; apolipoprotein B; and systolic and diastolic blood pressure. Increases in lipids and blood pressure associated with 10 mmol/L increase in sodium are similar to the increases associated with 7 to 10 years of aging. Analysis of sodium measurements made 3 years apart demonstrated that it is stable within 2 to 3 mmol/L, explaining its association with long-term health outcomes. Furthermore, elevated sodium promoted lipid accumulation in cultured adipocytes, suggesting direct causative effects on lipid metabolism. CONCLUSIONS: Serum sodium concentration is a cardiovascular risk factor even within the normal reference range. Thus, decreasing sodium to the lower end of the normal range by modification of water and salt intake is a personalizable strategy for decreasing cardiovascular risks.
Subject(s)
Blood Pressure , Cardiovascular Diseases/epidemiology , Lipids/blood , Sodium/blood , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Biomarkers/blood , Body Mass Index , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Cross-Sectional Studies , Female , Humans , Male , Mice , Middle Aged , Reference Values , Retrospective Studies , Risk Factors , Time Factors , United States/epidemiology , Waist-Hip RatioABSTRACT
Hypercoagulability increases risk of thrombi that cause cardiovascular events. Here we identify plasma sodium concentration as a factor that modulates blood coagulability by affecting the production of von Willebrand factor (vWF), a key initiator of the clotting cascade. We find that elevation of salt over a range from the lower end of what is normal in blood to the level of severe hypernatremia reversibly increases vWF mRNA in endothelial cells in culture and the rate of vWF secretion from them. The high NaCl increases expression of tonicity-regulated transcription factor NFAT5 and its binding to promoter of vWF gene, suggesting involvement of hypertonic signaling in vWF up-regulation. To elevate NaCl in vivo, we modeled mild dehydration, subjecting mice to water restriction (WR) by feeding them with gel food containing 30% water. Such WR elevates blood sodium from 145.1 Ā± 0.5 to 150.2 Ā± 1.3 mmol/L and activates hypertonic signaling, evidenced from increased expression of NFAT5 in tissues. WR increases vWF mRNA in liver and lung and raises vWF protein in blood. Immunostaining of liver revealed increased production of vWF protein by endothelium and increased number of microthrombi inside capillaries. WR also increases blood level of D-dimer, indicative of ongoing coagulation and thrombolysis. Multivariate regression analysis of clinical data from the Atherosclerosis Risk in Communities Study demonstrated that serum sodium significantly contributes to prediction of plasma vWF and risk of stroke. The results indicate that elevation of extracellular sodium within the physiological range raises vWF sufficiently to increase coagulability and risk of thrombosis.
Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Sodium/metabolism , Thrombophilia/complications , Thrombophilia/metabolism , Thrombosis/complications , Thrombosis/metabolism , von Willebrand Factor/metabolism , Animals , Dehydration/blood , Dehydration/complications , Dehydration/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/pathology , Humans , Mice , Middle Aged , Osmosis/drug effects , Risk Factors , Signal Transduction/drug effects , Sodium/blood , Sodium Chloride/pharmacology , Stroke/blood , Stroke/complications , Stroke/metabolism , Thrombophilia/blood , Thrombosis/blood , Transcription Factors/metabolismABSTRACT
High concentration of NaCl increases DNA breaks both in cell culture and in vivo. The breaks remain elevated as long as NaCl concentration remains high and are rapidly repaired when the concentration is lowered. The exact nature of the breaks, and their location, has not been entirely clear, and it has not been evident how cells survive, replicate, and maintain genome integrity in environments like the renal inner medulla in which cells are constantly exposed to high NaCl concentration. Repair of the breaks after NaCl is reduced is accompanied by formation of foci containing phosphorylated H2AX (ĆĀ³H2AX), which occurs around DNA double-strand breaks and contributes to their repair. Here, we confirm by specific comet assay and pulsed-field electrophoresis that cells adapted to high NaCl have increased levels of double-strand breaks. Importantly, ĆĀ³H2AX foci that occur during repair of the breaks are nonrandomly distributed in the mouse genome. By chromatin immunoprecipitation using anti-ĆĀ³H2AX antibody, followed by massive parallel sequencing (ChIP-Seq), we find that during repair of double-strand breaks induced by high NaCl, ĆĀ³H2AX is predominantly localized to regions of the genome devoid of genes ("gene deserts"), indicating that the high NaCl-induced double-strand breaks are located there. Localization to gene deserts helps explain why the DNA breaks are less harmful than are the random breaks induced by genotoxic agents such as UV radiation, ionizing radiation, and oxidants. We propose that the universal presence of NaCl around animal cells has directly influenced the evolution of the structure of their genomes.
Subject(s)
DNA Breaks, Double-Stranded , DNA/drug effects , Sodium Chloride/chemistry , Animals , Bleomycin/pharmacology , Comet Assay/methods , DNA/genetics , DNA Damage , DNA Fragmentation , DNA Repair Enzymes/chemistry , Histones/chemistry , Kidney/metabolism , Mice , Models, Genetic , Oxidants/chemistry , Phosphorylation , Radiation, Ionizing , Ultraviolet RaysABSTRACT
Background and Aims: Population aging is fueling an epidemic of age-related chronic diseases. Managing risk factors and lifestyle interventions have proven effective in disease prevention. Epidemiological studies have linked markers of poor hydration with higher risk of chronic diseases and premature mortality. Many individuals do not adhere to recommended hydration levels and could benefit from improved hydration habits. Our study evaluates the use of electronic medical records to confirm the relationship between inadequate hydration and the risk of chronic diseases, which may inform hydration-focused interventions in general healthcare. Methods: We analyzed 20-year electronic medical records for 411,029 adults from Israel's Leumit Healthcare Services. Hydration status was assessed using serum sodium and tonicity. We included adults without significant chronic diseases or water balance issues, defined as having normal serum sodium (135-146 mmol/l) and no diagnosis of diabetes. We used Cox proportional hazards models, adjusted for age, to assess the risk of developing hypertension and heart failure. Results: Our findings showed an increased risk of hypertension with elevated serum sodium levels: a 12% rise for the 140-142 mmol/l group and 30% for levels above 143 mmol/l (HR1.30, 95%CI:1.26-1.34). Tonicity over 287 mosmol/kg was associated with a 19% increased risk of hypertension (HR1.19, 95%CI:1.17-1.22). The risk of heart failure also increased, reaching 20% for sodium levels above 143 mmol/l (HR1.20,95%CI:1.12-1.29) and 16% for tonicity above 289 mosmol/kg (HR1.16, 95%CI: 1.10-1.22). The association between sodium and hypertension was observed across genders, while the risk of heart failure was more pronounced in females. Within the healthy Leumit cohort, 19% had serum sodium levels within the 143-146 mmol/l range, and 39% were in the 140-142 mmol/l range. Conclusions: Data analysis from electronic medical records identified a link between serum sodium of 140 mmol/l and above and increased risk of hypertension and heart failure in the general Israeli population. Identifying individuals with high-normal sodium values in healthcare records could guide improvements in hydration habits, potentially leading to better health outcomes.
ABSTRACT
Body water balance is determined by fundamental homeostatic mechanisms that maintain stable volume, osmolality and the composition of extracellular and intracellular fluids. Water balance is maintained by multiple mechanisms that continuously match water losses through urine, the skin, the gastrointestinal tract and respiration with water gains achieved through drinking, eating and metabolic water production. Hydration status is determined by the state of the water balance. Underhydration occurs when a decrease in body water availability, due to high losses or low gains, stimulates adaptive responses within the water balance network that are aimed at decreasing losses and increasing gains. This stimulation is also accompanied by cardiovascular adjustments. Epidemiological and experimental studies have linked markers of low fluid intake and underhydration - such as increased plasma concentration of vasopressin and sodium, as well as elevated urine osmolality - with an increased risk of new-onset chronic diseases, accelerated aging and premature mortality, suggesting that persistent activation of adaptive responses may be detrimental to long-term health outcomes. The causative nature of these associations is currently being tested in interventional trials. Understanding of the physiological responses to underhydration may help to identify possible mechanisms that underlie potential adverse, long-term effects of underhydration and inform future research to develop preventative and treatment approaches to the optimization of hydration status.
ABSTRACT
BACKGROUND: It is known that some people age faster than others, some people live into old age disease-free, while others develop age-related chronic diseases. With a rapidly aging population and an emerging chronic diseases epidemic, finding mechanisms and implementing preventive measures that could slow down the aging process has become a new challenge for biomedical research and public health. In mice, lifelong water restriction shortens the lifespan and promotes degenerative changes. Here, we test the hypothesis that optimal hydration may slow down the aging process in humans. METHODS: We performed a cohort analysis of data from the Atherosclerosis Risk in Communities study with middle-age enrollment (45-66 years, nĀ =Ā 15,752) and 25 years follow-up. We used serum sodium, as a proxy for hydration habits. To estimate the relative speed of aging, we calculated the biological age (BA) from age-dependent biomarkers and assessed risks of chronic diseases and premature mortality. FINDINGS: The analysis showed that middle age serum sodium >142Ā mmol/l is associated with a 39% increased risk to develop chronic diseases (hazard ratio [HR]Ā =Ā 1.39, 95% confidence interval [CI]:1.18-1.63) and >144Ā mmol/l with 21% elevated risk of premature mortality (HRĀ =Ā 1.21, 95% CI:1.02-1.45). People with serum sodium >142Ā mmol/l had up to 50% higher odds to be older than their chronological age (ORĀ =Ā 1.50, 95% CI:1.14-1.96). A higher BA was associated with an increased risk of chronic diseases (HRĀ =Ā 1.70, 95% CI:1.50-1.93) and premature mortality (HRĀ =Ā 1.59, 95% CI 1.39-1.83). INTERPRETATION: People whose middle-age serum sodium exceeds 142Ā mmol/l have increased risk to be biologically older, develop chronic diseases and die at younger age. Intervention studies are needed to confirm the link between hydration and aging. FUNDING: This work was funded by Intramural Research program of the National Heart, Lung, and Blood Institute (NHLBI). The ARIC study has been funded in whole or in part with federal funds from the NHLBI; the National Institutes of Health (NIH); and the Department of Health and Human Services.
Subject(s)
Aging , Mortality, Premature , Middle Aged , Humans , Animals , Mice , Aged , Risk Factors , Chronic Disease , SodiumABSTRACT
Mre11 is a critical participant in upkeep of nuclear DNA, its repair, replication, meiosis, and maintenance of telomeres. The upkeep of mitochondrial DNA (mtDNA) is less well characterized, and whether Mre11 participates has been unknown. We previously found that high NaCl causes some of the Mre11 to leave the nucleus, but we did not then attempt to localize it within the cytoplasm. In the present studies, we find Mre11 in mitochondria isolated from primary renal cells and show that the amount of Mre11 in mitochondria increases with elevation of extracellular NaCl. We confirm the presence of Mre11 in the mitochondria of cells by confocal microscopy and show that some of the Mre11 colocalizes with mtDNA. Furthermore, crosslinking of Mre11 to DNA followed by Mre11 immunoprecipitation directly demonstrates that some Mre11 binds to mtDNA. Abundant Mre11 is also present in tissue sections from normal mouse kidneys, colocalized with mitochondria of proximal tubule and thick ascending limb cells. To explore whether distribution of Mre11 changes with cell differentiation, we used an experimental model of tubule formation by culturing primary kidney cells in Matrigel matrix. In nondifferentiated cells, Mre11 is mostly in the nucleus, but it becomes mostly cytoplasmic upon cell differentiation. We conclude that Mre11 is present in mitochondria where it binds to mtDNA and that the amount in mitochondria varies depending on cellular stress and differentiation. Our results suggest a role for Mre11 in the maintenance of genome integrity in mitochondria in addition to its previously known role in maintenance of nuclear DNA.
Subject(s)
DNA Repair Enzymes/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Kidney/enzymology , Mitochondria/enzymology , Animals , Binding Sites , Cell Differentiation , Cell Nucleus/enzymology , Cells, Cultured , Cytoplasm/enzymology , Fluorescent Antibody Technique , Immunoprecipitation , Kidney/cytology , MRE11 Homologue Protein , Mice , Microscopy, Confocal , Osmotic Pressure , Protein Transport , Sodium Chloride/metabolism , Stress, PhysiologicalABSTRACT
High NaCl rapidly activates p38 MAPK by phosphorylating it, the phosphorylation presumably being regulated by a balance of kinases and phosphatases. Kinases are known, but the phosphatases are uncertain. Our initial purpose was to identify the phosphatases. We find that in HEK293 cells transient overexpression of MAPK phosphatase-1 (MKP-1), a dual-specificity phosphatase, inhibits high NaCl-induced phosphorylation of p38, and that overexpression of a dominant negative mutant of MKP-1 does the opposite. High NaCl lowers MKP-1 activity by increasing reactive oxygen species, which directly inhibit MKP-1, and by reducing binding of MKP-1 to p38. Because inhibition of p38 is reported to reduce hypertonicity-induced activation of the osmoprotective transcription factor, TonEBP/OREBP, we anticipated that MKP-1 expression might also. However, overexpression of MKP-1 has no significant effect on Ton EBP/OREBP activity. This paradox is explained by opposing effects of p38alpha and p38delta, both of which are activated by high NaCl and inhibited by MKP-1. Thus, we find that overexpression of p38alpha increases high NaCl-induced TonEBP/OREBP activity, but overexpression of p38delta reduces it. Also, siRNA-mediated knockdown of p38delta enhances the activation of TonEBP/OREBP. We conclude that high NaCl inhibits MKP-1, which contributes to the activation of p38. However, opposing actions of p38alpha and p38delta negate any effect on TonEBP/OREBP activity. Thus, activation of p38 isoforms by hypertonicity does not contribute to activation of TonEBP/OREBP because of opposing effects of p38alpha and p38delta, and effects of inhibitors of p38 depend on which isoform is affected, which can be misleading.
Subject(s)
Dual Specificity Phosphatase 1/physiology , Mitogen-Activated Protein Kinase 13/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , NFATC Transcription Factors/metabolism , Sodium Chloride/pharmacology , Transcription Factors/metabolism , Cell Line , Dual Specificity Phosphatase 1/antagonists & inhibitors , Dual Specificity Phosphatase 1/genetics , Enzyme Activation/drug effects , Humans , Mitogen-Activated Protein Kinase 13/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Phosphorylation/drug effectsABSTRACT
Human induced pluripotent stem cell (iPSC) technology has opened exciting opportunities for stem-cell-based therapy. However, its wide adoption is precluded by several challenges including low reprogramming efficiency and potential for malignant transformation. Better understanding of the molecular mechanisms of the changes that cells undergo during reprograming is needed to improve iPSCs generation efficiency and to increase confidence for their clinical use safety. Here, we find that dominant negative mutations in STAT3 in patients with autosomal-dominant hyper IgE (Job's) syndrome (AD-HIES) result in greatly reduced reprograming efficiency of primary skin fibroblasts derived from skin biopsies. Analysis of normal skin fibroblasts revealed upregulation and phosphorylation of endogenous signal transducer and activator of transcription 3 (STAT3) and its binding to the NANOG promoter following transduction with OKSM factors. This coincided with upregulation of NANOG and appearance of cells expressing pluripotency markers. Upregulation of NANOG and number of pluripotent cells were greatly reduced throughout the reprograming process of AD-HIES fibroblasts that was restored by over-expression of functional STAT3. NANOGP8, the human-specific NANOG retrogene that is often expressed in human cancers, was also induced during reprogramming, to very low but detectable levels, in a STAT3-dependent manner. Our study revealed the critical role of endogenous STAT3 in facilitating reprogramming of human somatic cells.
Subject(s)
Disease Susceptibility , Immunoglobulin E/blood , Job Syndrome/etiology , Job Syndrome/metabolism , Mutation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Adolescent , Adult , Aged , Alleles , Amino Acid Substitution , Cells, Cultured , Child , Fibroblasts/metabolism , Genetic Predisposition to Disease , Genotype , Humans , Immunoglobulin E/immunology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Loss of Function Mutation , Middle Aged , Young AdultABSTRACT
There are more than 7000 described rare diseases, most lacking specific treatment. Autosomal-dominant hyper-IgE syndrome (AD-HIES, also known as Job's syndrome) is caused by mutations in STAT3. These patients present with immunodeficiency accompanied by severe nonimmunological features, including skeletal, connective tissue, and vascular abnormalities, poor postinfection lung healing, and subsequent pulmonary failure. No specific therapies are available for these abnormalities. Here, we investigated underlying mechanisms in order to identify therapeutic targets. Histological analysis of skin wounds demonstrated delayed granulation tissue formation and vascularization during skin-wound healing in AD-HIES patients. Global gene expression analysis in AD-HIES patient skin fibroblasts identified deficiencies in a STAT3-controlled transcriptional network regulating extracellular matrix (ECM) remodeling and angiogenesis, with hypoxia-inducible factor 1α (HIF-1α) being a major contributor. Consistent with this, histological analysis of skin wounds and coronary arteries from AD-HIES patients showed decreased HIF-1α expression and revealed abnormal organization of the ECM and altered formation of the coronary vasa vasorum. Disease modeling using cell culture and mouse models of angiogenesis and wound healing confirmed these predicted deficiencies and demonstrated therapeutic benefit of HIF-1α-stabilizing drugs. The study provides mechanistic insights into AD-HIES pathophysiology and suggests potential treatment options for this rare disease.
Subject(s)
Extracellular Matrix/metabolism , Job Syndrome/metabolism , Neovascularization, Physiologic , Skin/metabolism , Wound Healing , Wounds and Injuries/metabolism , Animals , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Job Syndrome/genetics , Job Syndrome/pathology , Male , Mice , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Skin/blood supply , Skin/pathology , Wounds and Injuries/genetics , Wounds and Injuries/pathologyABSTRACT
With increased life expectancy worldwide, there is an urgent need for improving preventive measures that delay the development of age-related degenerative diseases. Here, we report evidence from mouse and human studies that this goal can be achieved by maintaining optimal hydration throughout life. We demonstrate that restricting the amount of drinking water shortens mouse lifespan with no major warning signs up to 14 months of life, followed by sharp deterioration. Mechanistically, water restriction yields stable metabolism remodeling toward metabolic water production with greater food intake and energy expenditure, an elevation of markers of inflammation and coagulation, accelerated decline of neuromuscular coordination, renal glomerular injury, and the development of cardiac fibrosis. In humans, analysis of data from the Atherosclerosis Risk in Communities (ARIC) study revealed that hydration level, assessed at middle age by serum sodium concentration, is associated with markers of coagulation and inflammation and predicts the development of many age-related degenerative diseases 24 years later. The analysis estimates that improving hydration throughout life may greatly decrease the prevalence of degenerative diseases, with the most profound effect on dementia, heart failure (HF), and chronic lung disease (CLD), translating to the development of these diseases in 3 million fewer people in the United States alone.
Subject(s)
Aging/metabolism , Life , Water-Electrolyte Balance , Acute Kidney Injury , Animals , Atherosclerosis/metabolism , Biomarkers/blood , Chronic Disease , Dehydration/epidemiology , Dehydration/metabolism , Dementia/metabolism , Fibrosis , Heart Failure/metabolism , Humans , Inflammation , Lung Diseases/metabolism , Male , Mice , Neurodegenerative Diseases/metabolism , Organism Hydration Status , Regression Analysis , Risk Factors , Sodium/bloodABSTRACT
Mammalian renal inner medullary cells are normally exposed to extremely high NaCl concentrations. The interstitial NaCl concentration in parts of a normal renal medulla can be 500 mM or more, depending on the species. Remarkably, under these normal conditions, the high NaCl causes DNA damage, yet the cells survive and function both in cell culture and in vivo. Both in cell culture and in vivo the breaks are repaired rapidly if the NaCl concentration is lowered. This chapter describes two methods used to detect and study the DNA damage induced by osmotic stress: comet assay or single cell electrophoresis and TUNEL assay or in situ labeling of 3'-OH ends of DNA strands. This chapter also discusses how specifics of the protocols influence the conclusions about types of DNA damage and what the limitations of these methods are for detecting different types of DNA damage.
Subject(s)
Apoptosis/physiology , DNA Damage/physiology , Osmotic Pressure , Comet Assay/methods , In Situ Nick-End Labeling/methodsABSTRACT
Thyroid hormone receptors (TRs) are ligand-regulatable transcription factors. Currently, little is known about the expression of TRs or other nuclear hormone receptors during the cell cycle. We thus developed a stable expression system to express green fluorescent protein-TRbeta in HeLa cells under tetracycline regulation, and studied TR expression during the cell cycle by laser scanning cytometry. Only approximately 9-15% of the nonsynchronized cell population expressed TR because the majority of cells were in G(1) phase and did not express detectable amounts of TR. However, when cells were synchronized in early S phase with hydroxyurea and then released, TR expression levels increased in a cell cycle-dependent manner and peaked to 30-40% cells expressing TR at late G(2)/M phase before declining to nonsynchronized levels. Moreover, we observed a direct correlation between transcriptional activity and TR expression during the cell cycle. Similar cell cycle-dependent findings also were observed for endogenous TR in rat pituitary GH(3) cells. Last, cycloheximide studies demonstrated that the increase in TR expression was primarily due to increased translation. These novel observations of cell cycle-dependent expression of TR suggest that differential hormone sensitivity can occur during the cell cycle and may contribute to cell cycle progression during normal development and oncogenesis.
Subject(s)
Receptors, Thyroid Hormone/metabolism , Animals , Blotting, Western , Cell Cycle , Cell Nucleus/metabolism , Cell Separation , Cycloheximide/pharmacology , Dose-Response Relationship, Drug , Doxycycline/pharmacology , Flow Cytometry , G1 Phase , G2 Phase , Gene Expression Regulation , Green Fluorescent Proteins , HeLa Cells , Hormones/metabolism , Humans , Hydroxyurea/pharmacology , Lasers , Ligands , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Mitosis , Plasmids/metabolism , RNA Processing, Post-Transcriptional , Rats , Reverse Transcriptase Polymerase Chain Reaction , S Phase , Tetracycline/pharmacology , Thyroid Hormone Receptors beta , Time Factors , Transcription, Genetic , Transcriptional ActivationABSTRACT
ACDC (arterial calcification due to deficiency of CD73) is an autosomal recessive disease resulting from loss-of-function mutations in NT5E, which encodes CD73, a 5'-ectonucleotidase that converts extracellular adenosine monophosphate to adenosine. ACDC patients display progressive calcification of lower extremity arteries, causing limb ischemia. Tissue-nonspecific alkaline phosphatase (TNAP), which converts pyrophosphate (PPi) to inorganic phosphate (Pi), and extracellular purine metabolism play important roles in other inherited forms of vascular calcification. Compared to cells from healthy subjects, induced pluripotent stem cell-derived mesenchymal stromal cells (iMSCs) from ACDC patients displayed accelerated calcification and increased TNAP activity when cultured under conditions that promote osteogenesis. TNAP activity generated adenosine in iMSCs derived from ACDC patients but not in iMSCs from control subjects, which have CD73. In response to osteogenic stimulation, ACDC patient-derived iMSCs had decreased amounts of the TNAP substrate PPi, an inhibitor of extracellular matrix calcification, and exhibited increased activation of AKT, mechanistic target of rapamycin (mTOR), and the 70-kDa ribosomal protein S6 kinase (p70S6K), a pathway that promotes calcification. In vivo, teratomas derived from ACDC patient cells showed extensive calcification and increased TNAP activity. Treating mice bearing these teratomas with an A2b adenosine receptor agonist, the mTOR inhibitor rapamycin, or the bisphosphonate etidronate reduced calcification. These results show that an increase of TNAP activity in ACDC contributes to ectopic calcification by disrupting the extracellular balance of PPi and Pi and identify potential therapeutic targets for ACDC.
Subject(s)
Alkaline Phosphatase/metabolism , Genetic Diseases, Inborn/enzymology , Induced Pluripotent Stem Cells/enzymology , Mesenchymal Stem Cells/enzymology , Signal Transduction , Vascular Calcification/enzymology , 5'-Nucleotidase/deficiency , Adenosine/genetics , Adenosine/metabolism , Alkaline Phosphatase/genetics , Animals , GPI-Linked Proteins/deficiency , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Mesenchymal Stem Cells/pathology , Mice , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Vascular Calcification/genetics , Vascular Calcification/pathologyABSTRACT
Mammalian renal inner medullary cells are normally exposed to extremely high NaCl concentrations. Remarkably, under these normal conditions, the high NaCl causes DNA damage and inhibits its repair, yet the cells survive and function both in cell culture and in vivo. The interstitial NaCl concentration in parts of a normal renal medulla can be 500 mM or more, depending on the species. Studies of how the cells survive and function despite this extreme stress have led to the discovery of protective adaptations, including accumulation of large amounts of organic osmolytes, which normalize cell volume and intracellular ionic strength, despite the hypertonicity of the high NaCl. Those adaptations, however, do not prevent DNA damage. High NaCl induces DNA breaks rapidly, and the DNA breaks persist even after the cells become adapted to the high NaCl. The adapted cells proliferate rapidly in cell culture and function adequately in vivo despite the DNA breaks. Both in cell culture and in vivo the breaks are rapidly repaired if the NaCl concentration is lowered. Although acute elevation of NaCl causes transient cell cycle arrest and, when the elevation is too extreme, apoptosis, proliferation of adapted cells is not arrested in culture and apoptosis is not evident either in culture or in vivo. Further, high NaCl impairs activation of several components of the classical DNA damage response such as Mre11, H2AX and Chk1 leading to inhibition of DNA repair. Nevertheless, other regular participants in the DNA damage response, such as Gadd45a, Gadd153, p53, Hsp70, and ATM are still upregulated by high NaCl. How high NaCl causes the DNA breaks and how the cells survive them is conjectural at this point. We discuss possible answers to these questions, based on current knowledge about induction and processing of DNA breaks.