Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Small ; 20(22): e2307536, 2024 May.
Article in English | MEDLINE | ID: mdl-38126666

ABSTRACT

Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm-1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.


Subject(s)
Biocompatible Materials , Bridged Bicyclo Compounds, Heterocyclic , Electric Conductivity , Polymers , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Polymers/chemistry , Biocompatible Materials/chemistry , Polystyrenes/chemistry , Protein Engineering/methods , Ions , Electronics
2.
Cell Biol Toxicol ; 39(4): 1627-1639, 2023 08.
Article in English | MEDLINE | ID: mdl-36029423

ABSTRACT

Carbon nanotubes (CNTs) have become promising advanced materials and a new tool to specifically interact with electroresponsive cells. Likewise, conductive polymers (CP) appear promising electroactive biomaterial for proliferation of cells. Herein, we have investigated CNT blends with two different conductive polymers, polypyrrole/CNT (PPy/CNT) and PEDOT/CNT to evaluate the growth, survival, and beating behavior of neonatal rat ventricular myocytes (NRVM). The combination of CP/CNT not only shows excellent biocompatibility on NRVM, after 2 weeks of culture, but also exerts functional effects on networks of cardiomyocytes. NRVMs cultured on CNT-based substrates exhibited improved cellular function, i.e., homogeneous, non-arrhythmogenic, and more frequent spontaneous beating; particularly PEDOT/CNT substrates, which yielded to higher beating amplitudes, thus suggesting a more mature cardiac phenotype. Furthermore, cells presented enhanced structure: aligned sarcomeres, organized and abundant Connexin 43 (Cx43). Finally, no signs of induced hypertrophy were observed. In conclusion, the combination of CNT with CP produces high viability and promotes cardiac functionality, suggesting great potential to generate scaffolding supports for cardiac tissue engineering.


Subject(s)
Myocytes, Cardiac , Nanotubes, Carbon , Rats , Animals , Polymers , Tissue Scaffolds , Animals, Newborn , Pyrroles
3.
Macromol Rapid Commun ; 42(12): e2100100, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938086

ABSTRACT

Tailor-made polymers are needed to fully exploit the possibilities of additive manufacturing, constructing complex, and functional devices in areas such as bioelectronics. In this paper, the synthesis of a conducting and biocompatible graft copolymer which can be 3D printed using direct melting extrusion methods is shown. For this purpose, graft copolymers composed by conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and a biocompatible polymer polylactide (PLA) are designed. The PEDOT-g-PLA copolymers are synthesized by chemical oxidative polymerization between 3,4-ethylenedioxythiophene and PLA macromonomers. PEDOT-g-PLA copolymers with different compositions are obtained and fully characterized. The rheological characterization indicates that copolymers containing below 20 wt% of PEDOT show the right complex viscosity values suitable for direct ink writing (DIW). The 3D printing tests using the DIW methodology allows printing different parts with different shapes with high resolution (200 µm). The conductive and biocompatible printed patterns of PEDOT-g-PLA show excellent cell growth and maturation of neonatal cardiac myocytes cocultured with fibroblasts.


Subject(s)
Ink , Polymers , Bridged Bicyclo Compounds, Heterocyclic , Humans , Infant, Newborn , Polyesters , Writing
4.
J Am Chem Soc ; 142(35): 14854-14858, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32799520

ABSTRACT

The combination of two two-photon-induced processes in a Förster resonance energy transfer (FRET)-operated photochromic fluorene-dithienylethene dyad lays the foundation for the observation of a quartic dependence of the fluorescence signal on the excitation light intensity. While this photophysical behavior is predicted for a four-photon absorbing dye, the herein proposed approach opens the way to use two-photon absorbing dyes, reaching the same performance. Hence, the spatial resolution limit, being a critical parameter for applications in fluorescence imaging or data storage with common two-photon absorbing dyes, is dramatically improved.

5.
Biomacromolecules ; 20(1): 73-89, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30543402

ABSTRACT

3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell-matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.


Subject(s)
Electric Conductivity , Nanoconjugates/chemistry , Polymers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
6.
J Phys Chem Lett ; : 4851-4857, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669215

ABSTRACT

Metal-air batteries are an emerging technology with great potential to satisfy the demand for energy in high-consumption applications. However, this technology is still in an early stage, facing significant challenges such as a low cycle life that currently limits its practical use. Poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer has already demonstrated its efficiency as catalyst for oxygen reduction reaction (ORR) discharge as an alternative to traditional expensive and nonsustainable metal catalysts. Apart from that, in most electrochemical processes, three phenomena are needed: redox activity and electronic and ionic conduction. Material morphology is important to maximize the contact area and optimize the 3 mechanisms to obtain high-performance devices. In this work, porous scaffolds of PEDOT-organic ionic plastic crystal (OIPC) are prepared through vapor phase polymerization to be used as porous self-standing cathodes. The scaffolds, based on abundant elements, showed good thermal stability (200 °C), with potential ORR reversible electrocatalytic activity: 60% of Coulombic efficiency in aqueous medium after 200 cycles.

7.
Biomaterials ; 310: 122624, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38805956

ABSTRACT

The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns -flat, pyramidal, striped and wavy- to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine interfaces.


Subject(s)
Electrodes , Machine Learning , Polystyrenes , Printing, Three-Dimensional , Textiles , Humans , Polystyrenes/chemistry , Electric Conductivity , Wearable Electronic Devices , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Gels/chemistry , Polymers/chemistry , Polyethylene Glycols/chemistry , Electromyography/methods , Biocompatible Materials/chemistry
8.
Adv Sci (Weinh) ; : e2306424, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251224

ABSTRACT

In this work, a new method of multi-material printing in one-go using a commercially available 3D printer is presented. The approach is simple and versatile, allowing the manufacturing of multi-material layered or multi-material printing in the same layer. To the best of the knowledge, it is the first time that 3D printed Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) micro-patterns combining different materials are reported, overcoming mechanical stability issues. Moreover, the conducting ink is engineered to obtain stable in-time materials while retaining sub-100 µm resolution. Micro-structured bio-shaped protuberances are designed and 3D printed as electrodes for electrophysiology. Moreover, these microstructures are combined with polymerizable deep eutectic solvents (polyDES) as functional additives, gaining adhesion and ionic conductivity. As a result of the novel electrodes, low skin impedance values showed suitable performance for electromyography recording on the forearm. Finally, this concluded that the use of polyDES conferred stability over time, allowing the usability of the electrode 90 days after fabrication without losing its performance. All in all, this demonstrated a very easy-to-make procedure that allows printing PEDOT:PSS on soft, hard, and/or flexible functional substrates, opening up a new paradigm in the manufacturing of conducting multi-functional materials for the field of bioelectronics and wearables.

9.
Adv Sci (Weinh) ; : e2301176, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203308

ABSTRACT

Electrocardiography imaging (ECGi) is a non-invasive inverse reconstruction procedure which employs body surface potential maps (BSPM) obtained from surface electrode array measurements to improve the spatial resolution and interpretability of conventional electrocardiography (ECG) for the diagnosis of cardiac dysfunction. ECGi currently lacks precision, which has prevented its adoption in clinical setups. The introduction of high-density electrode arrays could increase ECGi reconstruction accuracy but is not attempted before due to manufacturing and processing limitations. Advances in multiple fields have now enabled the implementation of such arrays which poses questions on optimal array design parameters for ECGi. In this work, a novel conducting polymer electrode manufacturing process on flexible substrates is proposed to achieve high-density, mm-sized, conformable, long-term, and easily attachable electrode arrays for BSPM with parameters optimally selected for ECGi applications. Temporal, spectral, and correlation analysis are performed on a prototype array demonstrating the validity of the chosen parameters and the feasibility of high-density BSPM, paving the way for ECGi devices fit for clinical application.

10.
ACS Mater Lett ; 5(12): 3340-3346, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38075386

ABSTRACT

Underwater recording remains a critical challenge in bioelectronics because traditional flexible electrodes can not fulfill essential requirements such as stability and steady conductivity in aquatic environments. Herein, we show the use of elastic gels made of hydrophobic natural eutectic solvents as water-resistant electrodes. These eutectogels are designed with tailorable mechanical properties via one-step photopolymerization of acrylic monomers in different eutectic mixtures composed of fatty acids and menthol. The low viscosity of the eutectics turns the formulations into suitable inks for 3D printing, allowing fast manufacturing of complex objects. Furthermore, the hydrophobic nature of the building blocks endows the eutectogels with excellent stability and low water uptake. The obtained flexible eutectogel electrodes can record real-time electromyography (EMG) signals with low interference in the air and underwater.

11.
Mater Horiz ; 10(7): 2516-2524, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37067040

ABSTRACT

Deep Eutectic Solvents (DES) are a new class of ionic conductive compounds attracting significant attention as greener alternatives to costly ionic liquids. Herein, we developed novel mixed ionic-electronic conducting materials by simple mixing of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and various DES as additives. The DES addition induces the supramolecular assembly and gelification of PEDOT:PSS forming eutectogels triggered by extensive hydrogen bonding and charge stabilization. The eutectogels feature boosts the mixed ionic-electronic conductivity of PEDOT:PSS up to 368 S cm-1, unveiling great potential as flexible bioelectronics. All the PEDOT:PSS/DES gels showed shear-thinning behavior and viscosity values ranging from 100 to 1000 Pa s. The eutectogels show good injectability with almost instantaneous elastic recovery, making them ideal materials for direct ink writing (DIW). As proof of that, PEDOT:PSS/DES (choline chloride:lactic acid) was 3D printed in different patterns, annealed at high temperature, and assembled into adhesive electrodes. This way tattoos-like electrodes, denoted as Eutecta2 were fabricated and placed in vivo on the forearm and the thumb of human volunteers for electromyography measurements. Eutecta2 hexagonal patterns showed excellent conformability, and their signal-to-noise ratio (SNR) was higher than Ag/AgCl commercial electrodes for thumb motion measurements. Furthermore, forearm motion was measured after 14 days with similar values of SNR, demonstrating long-term stability and reusability. All in all, our findings revealed that DES could be used as inexpensive and safe additives to direct the self-assembly of PEDOT:PSS into supramolecular eutectogels inks for flexible bioelectronics.

12.
ACS Macro Lett ; 11(3): 303-309, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35575369

ABSTRACT

A new photoinitiator system (PIS) based on riboflavin (Rf), triethanolamine, and multiwalled carbon nanobutes (MWCNTs) is presented for visible-light-induced photopolymerization of acrylic monomers. Using this PIS, photopolymerization of acrylamide and other acrylic monomers was quantitative in seconds. The intervention mechanism of CNTs in the PIS was studied deeply, proposing a surface interaction of MWCNTs with Rf which favors the radical generation and the initiation step. As a result, polyacrylamide/MWCNT hydrogel nanocomposites could be obtained with varying amounts of CNTs showing excellent mechanical, thermal, and electrical properties. The presence of the MWCNTs negatively influences the swelling properties of the hydrogel but significantly improves its mechanical properties (Young modulus values) and electric conductivity. The new PIS was tested for 3D printing in a LCD 3D printer. Due to the fast polymerizations, 3D-printed objects based on the conductive polyacrylamide/CNT nanocomposites could be manufactured in minutes.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Electric Conductivity , Hydrogels , Printing, Three-Dimensional
13.
ACS Appl Polym Mater ; 4(9): 6749-6759, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36119408

ABSTRACT

3D conductive materials such as polymers and hydrogels that interface between biology and electronics are actively being researched for the fabrication of bioelectronic devices. In this work, short-time (5 s) photopolymerizable conductive inks based on poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) dispersed in an aqueous matrix formed by a vinyl resin, poly(ethylene glycol) diacrylate (PEGDA) with different molecular weights (M n = 250, 575, and 700 Da), ethylene glycol (EG), and a photoinitiator have been optimized. These inks can be processed by Digital Light 3D Printing (DLP) leading to flexible and shape-defined conductive hydrogels and dry conductive PEDOTs, whose printability resolution increases with PEGDA molecular weight. Besides, the printed conductive PEDOT-based hydrogels are able to swell in water, exhibiting soft mechanical properties (Young's modulus of ∼3 MPa) similar to those of skin tissues and good conductivity values (10-2 S cm-1) for biosensing. Finally, the printed conductive hydrogels were tested as bioelectrodes for human electrocardiography (ECG) and electromyography (EMG) recordings, showing a long-term activity, up to 2 weeks, and enhanced detection signals compared to commercial Ag/AgCl medical electrodes for health monitoring.

14.
Nanoscale ; 14(26): 9313-9322, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35579037

ABSTRACT

Covalent modification of the surface of carbon nanotube fibres (CNTFs) through electrochemical reduction of para-substituted phenyldiazonium salts and electrochemical oxidation of an aliphatic diamine is described. Following these strategies, diverse surface functionalities have been introduced while preserving the fibre bulk properties. The corresponding modified CNTFs were fully characterised by Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-Ray, scanning electron microscopy and electrochemical impedance spectroscopy, exhibiting different surface properties from those of the unmodified CNTFs.

15.
ACS Appl Polym Mater ; 3(6): 2865-2883, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-35673585

ABSTRACT

Conducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of the current devices are rigid two-dimensional systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable three-dimensional (3D) (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic, and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene), polypyrrole, and polyaniline. It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene, and silver nanowires. Afterward, the foremost applications of CPs processed by 3D printing techniques in the biomedical and energy fields, that is, wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.

16.
Polymers (Basel) ; 13(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573011

ABSTRACT

Carbon nanomaterials (CNMs) and conjugated polymers (CPs) are actively investigated in applications such as optics, catalysis, solar cells, and tissue engineering. Generally, CNMs are implemented in devices where the relationship between the active elements and the micro and nanostructure has a crucial role. However, they present some limitations related to solubility, processibility and release or degradability that affect their manufacturing. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT) or derivatives can hide this limitation by electrodeposition onto an electrode. In this work we have explored two different CNMs immobilization methods in 2D and 3D structures. First, CNM/CP hybrid 2D films with enhanced electrochemical properties have been developed using bis-malonyl PEDOT and fullerene C60. The resulting 2D films nanoparticulate present novel electrochromic properties. Secondly, 3D porous self-standing scaffolds were prepared, containing carbon nanotubes and PEDOT by using the same bis-EDOT co-monomer, which show porosity and topography dependence on the composition. This article shows the validity of electropolymerization to obtain 2D and 3D materials including different carbon nanomaterials and conductive polymers.

17.
ACS Appl Mater Interfaces ; 12(51): 57330-57342, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33306363

ABSTRACT

Neuroblastoma-derived SH-SY5Y cells have become an excellent model for nervous system regeneration to treat neurodegenerative disorders. Many approaches achieved a mature population of derived neurons in in vitro plates. However, the importance of the third dimension in tissue regeneration has become indispensable to achieve a potential implant to replace the damaged tissue. Therefore, we have prepared porous 3D structures composed uniquely of carbon nanotubes (CNT) and poly(3,4-ethylenedioxythiophene) (PEDOT) that show great potential in the tridimensional differentiation of SH-SY5Y cells into mature neurons. The scaffolds have been manufactured through electropolymerization by applying 1.2 V in a three-electrode cell using a template of sucrose/CNT as a working electrode. By this method, PEDOT/CNT 3D scaffolds were obtained with homogeneous porosities and high conductivity. In vitro analyses showed that an excellent biocompatibility of the scaffold and the presence of high amount of ß-tubulin class III and MAP-II target proteins that mainly expresses in neurons, suggesting the differentiation into neuronal cells already after a week of incubation.


Subject(s)
Cell Differentiation/drug effects , Neurons/cytology , Tissue Scaffolds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/toxicity , Cell Culture Techniques , Cell Line, Tumor , Electric Conductivity , Humans , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Neurons/metabolism , Polymers/chemistry , Polymers/toxicity , Porosity , Tissue Engineering/methods , Tubulin/metabolism
18.
Macromol Biosci ; 20(11): e2000119, 2020 11.
Article in English | MEDLINE | ID: mdl-32597002

ABSTRACT

Iongels have attracted much attention over the years as ion-conducting soft materials for applications in several technologies including stimuli-responsive drug release and flexible (bio)electronics. Nowadays, iongels with additional functionalities such as electronic conductivity, self-healing, thermo-responsiveness, or biocompatibility are actively being searched for high demanding applications. In this work, a simple and rapid synthetic pathway to prepare elastic and thermoreversible iongels is presented. These iongels are prepared by supramolecular crosslinking between polyphenols biomolecules with a hydroxyl-rich biocompatible polymer such as poly(vinyl alcohol) (PVA) in the presence of ionic liquids. Using this strategy, a variety of iongels are obtained by combining different plant-derived polyphenol compounds (PhC) such as gallic acid, pyrogallol, and tannic acid with imidazolium-based ionic liquids, namely 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium bromide. A suite of characterization tools is used to study the structural, morphological, mechanical, rheological, and thermal properties of the supramolecular iongels. These iongels can withstand large deformations (40% under compression) with full recovery, revealing reversible transitions from solid to liquid state between 87 and 125 °C. Finally, the polyphenol-based thermoreversible iongels show appropriated properties for their potential application as printable electrolytes for bioelectronics.


Subject(s)
Elasticity , Gels/chemistry , Phenol/chemistry , Polyvinyl Alcohol/chemistry , Temperature , Calorimetry, Differential Scanning , Compressive Strength , Gallic Acid/chemistry , Ions , Polyphenols/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
19.
ACS Biomater Sci Eng ; 6(2): 1269-1278, 2020 02 10.
Article in English | MEDLINE | ID: mdl-33464834

ABSTRACT

Three-dimensional (3D) scaffolds with tailored stiffness, porosity, and conductive properties are particularly important in tissue engineering for electroactive cell attachment, proliferation, and vascularization. Carbon nanotubes (CNTs) and poly(3,4-ethylenedioxythiophene) (PEDOT) have been extensively used separately as neural interfaces showing excellent results. Herein, we combine both the materials and manufacture 3D structures composed exclusively of PEDOT and CNTs using a methodology based on vapor phase polymerization of PEDOT onto a CNT/sucrose template. Such a strategy presents versatility to produce porous scaffolds, after leaching out the sucrose grains, with different ratios of polymer/CNTs, and controllable and tunable electrical and mechanical properties. The resulting 3D structures show Young's modulus typical of soft materials (20-50 kPa), as well as high electrical conductivity, which may play an important role in electroactive cell growth. The conductive PEDOT/CNT porous scaffolds present high biocompatibility after 3 and 6 days of C8-D1A astrocyte incubation.


Subject(s)
Nanotubes, Carbon , Tissue Engineering , Bridged Bicyclo Compounds, Heterocyclic , Polymerization , Polymers , Tissue Scaffolds
20.
ACS Appl Mater Interfaces ; 11(20): 18671-18680, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31021594

ABSTRACT

Utilizing polymers in cardiac tissue engineering holds promise for restoring function to the heart following myocardial infarction, which is associated with grave morbidity and mortality. To properly mimic native cardiac tissue, materials must not only support cardiac cell growth but also have inherent conductive properties. Here, we present an injectable reverse thermal gel (RTG)-based cardiac cell scaffold system that is both biocompatible and conductive. Following the synthesis of a highly functionalizable, biomimetic RTG backbone, gold nanoparticles (AuNPs) were chemically conjugated to the backbone to enhance the system's conductivity. The resulting RTG-AuNP hydrogel supported targeted survival of neonatal rat ventricular myocytes (NRVMs) for up to 21 days when cocultured with cardiac fibroblasts, leading to an increase in connexin 43 (Cx43) relative to control cultures (NRVMs cultured on traditional gelatin-coated dishes and RTG hydrogel without AuNPs). This biomimetic and conductive RTG-AuNP hydrogel holds promise for future cardiac tissue engineering applications.


Subject(s)
Fibroblasts/pathology , Gold/chemistry , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Coculture Techniques , Fibroblasts/metabolism , Materials Testing , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Myocardium/pathology , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL