Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 119(44): e2214227119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279464

ABSTRACT

LUBAC-mediated linear ubiquitination plays a pivotal role in regulation of cell death and inflammatory pathways. Genetic deficiency in LUBAC components leads to severe immune dysfunction or embryonic lethality. LUBAC has been extensively studied for its role in mediating TNF signaling. However, Tnfr1 knockout is not able to fully rescue the embryonic lethality of LUBAC deficiency, suggesting that LUBAC may modify additional key cellular substrates in promoting cell survival. GPx4 is an important selenoprotein involved in regulating cellular redox homeostasis in defense against lipid peroxidation-mediated cell death known as ferroptosis. Here we demonstrate that LUBAC deficiency sensitizes to ferroptosis by promoting GPx4 degradation and downstream lipid peroxidation. LUBAC binds and stabilizes GPx4 by modulating its linear ubiquitination both in normal condition and under oxidative stress. Our findings identify GPx4 as a key substrate of LUBAC and a previously unrecognized role of LUBAC-mediated linear ubiquitination in regulating cellular redox status and cell death.


Subject(s)
Receptors, Tumor Necrosis Factor, Type I , Ubiquitin , Receptors, Tumor Necrosis Factor, Type I/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , NF-kappa B/metabolism , Ubiquitination
2.
Genes Dev ; 31(11): 1162-1176, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28701375

ABSTRACT

Stimulation of cells with TNFα leads to the formation of the TNF-R1 signaling complex (TNF-RSC) to mediate downstream cellular fate decision. Activation of the TNF-RSC is modulated by different types of ubiquitination and may lead to cell death, including apoptosis and necroptosis, in both RIPK1-dependent and RIPK1-independent manners. Spata2 (spermatogenesis-associated 2) is an adaptor protein recruited into the TNF-RSC to modulate the interaction between the linear ubiquitin chain assembly complex (LUBAC) and the deubiquitinase CYLD (cylindromatosis). However, the mechanism by which Spata2 regulates the activation of RIPK1 is unclear. Here, we report that Spata2-deficient cells show resistance to RIPK1-dependent apoptosis and necroptosis and are also partially protected against RIPK1-independent apoptosis. Spata2 deficiency promotes M1 ubiquitination of RIPK1 to inhibit RIPK1 kinase activity. Furthermore, we provide biochemical evidence for the USP domain of CYLD and the PUB domain of the SPATA2 complex preferentially deubiquitinating the M1 ubiquitin chain in vitro. Spata2 deficiency also promotes the activation of MKK4 and JNK and cytokine production independently of RIPK1 kinase activity. Spata2 deficiency sensitizes mice to systemic inflammatory response syndrome (SIRS) induced by TNFα, which can be suppressed by RIPK1 inhibitor Nec-1s. Thus, Spata2 can regulate inflammatory response and cell death in both RIPK1-dependent and RIPK1-independent manners.


Subject(s)
Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitination/genetics , Animals , Apoptosis/genetics , Cells, Cultured , Enzyme Activation/genetics , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphotransferases/genetics , Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Systemic Inflammatory Response Syndrome/enzymology , Systemic Inflammatory Response Syndrome/genetics
4.
Proc Natl Acad Sci U S A ; 114(45): 11944-11949, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078411

ABSTRACT

Apoptosis and necroptosis are two distinct cell death mechanisms that may be activated in cells on stimulation by TNFα. It is still unclear, however, how apoptosis and necroptosis may be differentially regulated. Here we screened for E3 ubiquitin ligases that could mediate necroptosis. We found that deficiency of Pellino 1 (PELI1), an E3 ubiquitin ligase, blocked necroptosis. We show that PELI1 mediates K63 ubiquitination on K115 of RIPK1 in a kinase-dependent manner during necroptosis. Ubiquitination of RIPK1 by PELI1 promotes the formation of necrosome and execution of necroptosis. Although PELI1 is not directly involved in mediating the activation of RIPK1, it is indispensable for promoting the binding of activated RIPK1 with its downstream mediator RIPK3 to promote the activation of RIPK3 and MLKL. Inhibition of RIPK1 kinase activity blocks PELI1-mediated ubiquitination of RIPK1 in necroptosis. However, we show that PELI1 deficiency sensitizes cells to both RIPK1-dependent and RIPK1-independent apoptosis as a result of down-regulated expression of c-FLIP, an inhibitor of caspase-8. Finally, we show that Peli1-/- mice are sensitized to TNFα-induced apoptosis. Thus, PELI1 is a key modulator of RIPK1 that differentially controls the activation of necroptosis and apoptosis.


Subject(s)
Apoptosis/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Necrosis/genetics , Nuclear Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Cell Line , HEK293 Cells , Humans , Mice , Mice, Knockout , Nuclear Proteins/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Cell Res ; 31(12): 1230-1243, 2021 12.
Article in English | MEDLINE | ID: mdl-34663909

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


Subject(s)
COVID-19/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/mortality , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/drug effects , ErbB Receptors/metabolism , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Survival Rate , Transcriptome/drug effects , Viral Load/drug effects , Virus Internalization , COVID-19 Drug Treatment
6.
Elife ; 4: e06734, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25821988

ABSTRACT

Autophagy is an important intracellular catabolic mechanism involved in the removal of misfolded proteins. Atg14L, the mammalian ortholog of Atg14 in yeast and a critical regulator of autophagy, mediates the production PtdIns3P to initiate the formation of autophagosomes. However, it is not clear how Atg14L is regulated. In this study, we demonstrate that ubiquitination and degradation of Atg14L is controlled by ZBTB16-Cullin3-Roc1 E3 ubiquitin ligase complex. Furthermore, we show that a wide range of G-protein-coupled receptor (GPCR) ligands and agonists regulate the levels of Atg14L through ZBTB16. In addition, we show that the activation of autophagy by pharmacological inhibition of GPCR reduces the accumulation of misfolded proteins and protects against behavior dysfunction in a mouse model of Huntington's disease. Our study demonstrates a common molecular mechanism by which the activation of GPCRs leads to the suppression of autophagy and a pharmacological strategy to activate autophagy in the CNS for the treatment of neurodegenerative diseases.


Subject(s)
Heterocyclic Compounds/pharmacology , Huntington Disease/drug therapy , Huntington Disease/genetics , Kruppel-Like Transcription Factors/genetics , Receptors, CXCR4/genetics , Vesicular Transport Proteins/genetics , Animals , Autophagy/drug effects , Autophagy/genetics , Autophagy-Related Proteins , Benzylamines , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Chromones/pharmacology , Cullin Proteins/genetics , Cullin Proteins/metabolism , Cyclams , Disease Models, Animal , Gene Expression Regulation , HEK293 Cells , Humans , Huntington Disease/mortality , Huntington Disease/pathology , Kruppel-Like Transcription Factors/metabolism , Mice , Morpholines/pharmacology , Phagosomes , Phosphatidylinositol Phosphates/biosynthesis , Promyelocytic Leukemia Zinc Finger Protein , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Psychomotor Performance/drug effects , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Rotarod Performance Test , Signal Transduction , Survival Analysis , Ubiquitination , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL