Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Plant Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941447

ABSTRACT

Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in two transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.

2.
Plant Cell ; 35(4): 1186-1201, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36625683

ABSTRACT

Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.


Subject(s)
Phytophthora , Solanum , Proteins/metabolism , Plants/metabolism , Phytophthora/genetics , Phytophthora/metabolism , Nicotiana/metabolism , Solanum/metabolism , Plant Diseases
3.
Plant Cell ; 35(1): 574-597, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36222564

ABSTRACT

Plants have evolved sophisticated immune networks to restrict pathogen colonization. In response, pathogens deploy numerous virulent effectors to circumvent plant immune responses. However, the molecular mechanisms by which pathogen-derived effectors suppress plant defenses remain elusive. Here, we report that the nucleus-localized RxLR effector PsAvh110 from the pathogen Phytophthora sojae, causing soybean (Glycine max) stem and root rot, modulates the activity of a transcriptional complex to suppress plant immunity. Soybean like-heterochromatin protein 1-2 (GmLHP1-2) and plant homeodomain finger protein 6 (GmPHD6) form a transcriptional complex with transcriptional activity that positively regulates plant immunity against Phytophthora infection. To suppress plant immunity, the nuclear effector PsAvh110 disrupts the assembly of the GmLHP1-2/GmPHD6 complex via specifically binding to GmLHP1-2, thus blocking its transcriptional activity. We further show that PsAvh110 represses the expression of a subset of immune-associated genes, including BRI1-associated receptor kinase 1-3 (GmBAK1-3) and pathogenesis-related protein 1 (GmPR1), via G-rich elements in gene promoters. Importantly, PsAvh110 is a conserved effector in different Phytophthora species, suggesting that the PsAvh110 regulatory mechanism might be widely utilized in the genus to manipulate plant immunity. Thus, our study reveals a regulatory mechanism by which pathogen effectors target a transcriptional complex to reprogram transcription.


Subject(s)
Phytophthora , Plant Immunity , Phytophthora/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism , Host-Pathogen Interactions/genetics
4.
Proc Natl Acad Sci U S A ; 120(28): e2302226120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399403

ABSTRACT

Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.


Subject(s)
Arabidopsis Proteins , Plant Immunity , Plant Immunity/genetics , Cyclopentanes , Transcription Factors/genetics , Transcription Factors/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
5.
PLoS Pathog ; 19(4): e1011346, 2023 04.
Article in English | MEDLINE | ID: mdl-37083862

ABSTRACT

Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.


Subject(s)
Ecosystem , Phytophthora infestans , Phytophthora infestans/genetics , Agrobacterium tumefaciens/genetics , Virulence/genetics , Mutation
6.
New Phytol ; 242(2): 576-591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362937

ABSTRACT

Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest class of membrane-localized receptor-like kinases in plants. Leucine-rich repeat receptor-like kinases are key immune sectors contributing to pattern-triggered immunity (PTI), but whether LRR-RLK mediates effector-triggered immunity (ETI) in plants remains unclear. In this study, we evaluated the function of LRR-RLKs in regulating ETI by using a virus-induced gene silencing (VIGS)-based reverse genetic screening assay, and identified a LRR-RLK named ETI-dependent receptor-like kinase 1 (EDK1) required for ETI triggered by the avirulence effector AVRblb2 secreted by Phytophthora infestans and its cognate receptor Rpi-blb2. Silencing or knockout of EDK1 compromised immunity mediated by Rpi-blb2 and the cell death triggered by recognition of AVRblb2. NLR-required for cell death 4 (NRC4), a signaling component acts downstream of Rpi-blb2, was identified that interacts with EDK1 using the LC-MS analysis and the interaction was further evaluated by co-immunoprecipitation. EDK1 promotes protein accumulation of NRC4 in a kinase-dependent manner and positively regulates resistance to P. infestans in Nicotiana benthamiana. Our study revealed that EDK1 positively regulates plant ETI through modulating accumulation of the NLR signaling component NRC4, representing a new regulatory role of the membrane-localized LRR-RLKs in plant immunity.


Subject(s)
Innate Immunity Recognition , Nicotiana , Nicotiana/genetics , Leucine , Plants , Plant Immunity , Cell Death , Plant Diseases/genetics
7.
PLoS Pathog ; 17(10): e1010001, 2021 10.
Article in English | MEDLINE | ID: mdl-34648596

ABSTRACT

Sexual reproduction is an essential stage of the oomycete life cycle. However, the functions of critical regulators in this biological process remain unclear due to a lack of genome editing technologies and functional genomic studies in oomycetes. The notorious oomycete pathogen Pythium ultimum is responsible for a variety of diseases in a broad range of plant species. In this study, we revealed the mechanism through which PuM90, a stage-specific Puf family RNA-binding protein, regulates oospore formation in P. ultimum. We developed the first CRISPR/Cas9 system-mediated gene knockout and in situ complementation methods for Pythium. PuM90-knockout mutants were significantly defective in oospore formation, with empty oogonia or oospores larger in size with thinner oospore walls compared with the wild type. A tripartite recognition motif (TRM) in the Puf domain of PuM90 could specifically bind to a UGUACAUA motif in the mRNA 3' untranslated region (UTR) of PuFLP, which encodes a flavodoxin-like protein, and thereby repress PuFLP mRNA level to facilitate oospore formation. Phenotypes similar to PuM90-knockout mutants were observed with overexpression of PuFLP, mutation of key amino acids in the TRM of PuM90, or mutation of the 3'-UTR binding site in PuFLP. The results demonstrated that a specific interaction of the RNA-binding protein PuM90 with the 3'-UTR of PuFLP mRNA at the post-transcriptional regulation level is critical for the sexual reproduction of P. ultimum.


Subject(s)
Pythium/physiology , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Plant Diseases/microbiology , Reproduction
8.
New Phytol ; 240(4): 1467-1483, 2023 11.
Article in English | MEDLINE | ID: mdl-37658678

ABSTRACT

The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , RNA/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Splicing/genetics , Exons/genetics , Plant Immunity/genetics , Alternative Splicing/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
9.
New Phytol ; 240(2): 784-801, 2023 10.
Article in English | MEDLINE | ID: mdl-37615219

ABSTRACT

The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.


Subject(s)
Leucine-Rich Repeat Proteins , Phytophthora , Animals , Nicotiana/genetics , Leucine , Immunity, Innate , Mammals
10.
Proc Natl Acad Sci U S A ; 117(17): 9613-9620, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32284406

ABSTRACT

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.


Subject(s)
Chloroplasts/microbiology , Gene Expression Regulation, Plant/immunology , Light , NLR Proteins/metabolism , Phytophthora infestans/metabolism , Plant Proteins/metabolism , Agrobacterium/metabolism , Animals , Chloroplasts/metabolism , Escherichia coli/metabolism , Fungal Proteins , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant/radiation effects , Gene Silencing , Microscopy, Confocal , NLR Proteins/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Proteins/genetics , Seedlings , Solanum tuberosum/metabolism , Solanum tuberosum/microbiology , Nicotiana/metabolism , Nicotiana/microbiology , Two-Hybrid System Techniques
11.
Proc Natl Acad Sci U S A ; 117(44): 27685-27693, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33082226

ABSTRACT

Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Cellulase/metabolism , Glycine max/microbiology , Phytophthora/pathogenicity , Plant Diseases/microbiology , Plant Proteins/metabolism , Aspartic Acid Endopeptidases/genetics , Cellulase/genetics , Disease Resistance/genetics , Gene Knockdown Techniques , Glycosylation , Host-Pathogen Interactions/genetics , Phytophthora/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Protein Binding , Protein Processing, Post-Translational , Proteolysis , Glycine max/enzymology , Glycine max/genetics , Virulence
12.
PLoS Genet ; 16(3): e1008646, 2020 03.
Article in English | MEDLINE | ID: mdl-32150559

ABSTRACT

Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly.


Subject(s)
Centromere/genetics , Oomycetes/genetics , Phytophthora/genetics , Alveolata/genetics , Centromere/metabolism , Centromere Protein A/genetics , Chromatin/genetics , Chromatin Immunoprecipitation/methods , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation/genetics , Heterochromatin/genetics , Histones/genetics , Kinetochores/metabolism , Kinetochores/physiology , Phytophthora/metabolism , Rhizaria/genetics , Stramenopiles/genetics
13.
Proc Natl Acad Sci U S A ; 117(29): 17409-17417, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32616567

ABSTRACT

Proteolytic cascades regulate immunity and development in animals, but these cascades in plants have not yet been reported. Here we report that the extracellular immune protease Rcr3 of tomato is activated by P69B and other subtilases (SBTs), revealing a proteolytic cascade regulating extracellular immunity in solanaceous plants. Rcr3 is a secreted papain-like Cys protease (PLCP) of tomato that acts both in basal resistance against late blight disease (Phytophthora infestans) and in gene-for-gene resistance against the fungal pathogen Cladosporium fulvum (syn. Passalora fulva) Despite the prevalent model that Rcr3-like proteases can activate themselves at low pH, we found that catalytically inactive proRcr3 mutant precursors are still processed into mature mRcr3 isoforms. ProRcr3 is processed by secreted P69B and other Asp-selective SBTs in solanaceous plants, providing robust immunity through SBT redundancy. The apoplastic effector EPI1 of P. infestans can block Rcr3 activation by inhibiting SBTs, suggesting that this effector promotes virulence indirectly by preventing the activation of Rcr3(-like) immune proteases. Rcr3 activation in Nicotiana benthamiana requires a SBT from a different subfamily, indicating that extracellular proteolytic cascades have evolved convergently in solanaceous plants or are very ancient in the plant kingdom. The frequent incidence of Asp residues in the cleavage region of Rcr3-like proteases in solanaceous plants indicates that activation of immune proteases by SBTs is a general mechanism, illuminating a proteolytic cascade that provides robust apoplastic immunity.


Subject(s)
Peptide Hydrolases/metabolism , Plant Diseases/immunology , Plant Immunity , Proteolysis , Solanum lycopersicum/metabolism , Cladosporium , Solanum lycopersicum/genetics , Peptide Hydrolases/genetics , Phytophthora infestans , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Proteins/metabolism , Protein Isoforms , Virulence
14.
J Integr Plant Biol ; 65(9): 2204-2217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37171031

ABSTRACT

Plants can be infected by multiple pathogens concurrently in natural systems. However, pathogen-pathogen interactions have rarely been studied. In addition to the oomycete Phytophthora sojae, fungi such as Fusarium spp. also cause soybean root rot. In a 3-year field investigation, we discovered that P. sojae and Fusarium spp. frequently coexisted in diseased soybean roots. Out of 336 P. sojae-soybean-Fusarium combinations, more than 80% aggravated disease. Different Fusarium species all enhanced P. sojae infection when co-inoculated on soybean. Treatment with Fusarium secreted non-proteinaceous metabolites had an effect equal to the direct pathogen co-inoculation. By screening a Fusarium graminearum mutant library, we identified Fusarium promoting factor of Phytophthora sojae infection 1 (Fpp1), encoding a zinc alcohol dehydrogenase. Fpp1 is functionally conserved in Fusarium and contributes to metabolite-mediated infection promotion, in which vitamin B6 (VB6) produced by Fusarium is key. Transcriptional and functional analyses revealed that Fpp1 regulates two VB6 metabolism genes, and VB6 suppresses expression of soybean disease resistance-related genes. These results reveal that co-infection with Fusarium promotes loss of P. sojae resistance in soybean, information that will inform the sustainable use of disease-resistant crop varieties and provide new strategies to control soybean root rot.


Subject(s)
Fusarium , Phytophthora , Glycine max/metabolism , Vitamin B 6/metabolism , Phytophthora/physiology , Disease Resistance/genetics , Vitamins/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
15.
Mol Plant Microbe Interact ; 35(4): 301-310, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35037783

ABSTRACT

Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Phytophthora , Chromatin/genetics , High-Throughput Nucleotide Sequencing/methods , Phytophthora/genetics , Transcription Factors/genetics
16.
Plant Physiol ; 187(1): 321-335, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34618132

ABSTRACT

Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the ß-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.


Subject(s)
Carbohydrate Epimerases/genetics , Fungal Proteins/genetics , Phytophthora/physiology , Sugars/metabolism , Biological Transport , Carbohydrate Epimerases/metabolism , Fungal Proteins/metabolism , Mutation , Phytophthora/enzymology , Phytophthora/genetics
17.
Nucleic Acids Res ; 48(4): 1790-1799, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31819959

ABSTRACT

The relentless adaptability of pathogen populations is a major obstacle to effective disease control measures. Increasing evidence suggests that gene transcriptional polymorphisms are a strategy deployed by pathogens to evade host immunity. However, the underlying mechanisms of transcriptional plasticity remain largely elusive. Here we found that the soybean root rot pathogen Phytophthora sojae evades the soybean Resistance gene Rps1b through transcriptional polymorphisms in the effector gene Avr1b that occur in the absence of any sequence variation. Elevated levels of histone H3 Lysine27 tri-methylation (H3K27me3) were observed at the Avr1b locus in a naturally occurring Avr1b-silenced strain but not in an Avr1b-expressing strain, suggesting a correlation between this epigenetic modification and silencing of Avr1b. To genetically test this hypothesis, we edited the gene, PsSu(z)12, encoding a core subunit of the H3K27me3 methyltransferase complex by using CRISPR/Cas9, and obtained three deletion mutants. H3K27me3 depletion within the Avr1b genomic region correlated with impaired Avr1b gene silencing in these mutants. Importantly, these mutants lost the ability to evade immune recognition by soybeans carrying Rps1b. These data support a model in which pathogen effector transcriptional polymorphisms are associated with changes in chromatin epigenetic marks, highlighting epigenetic variation as a mechanism of pathogen adaptive plasticity.


Subject(s)
Glycine max/genetics , Histones/genetics , Phytophthora/genetics , Plant Diseases/microbiology , Alleles , Amino Acid Sequence/genetics , Gene Silencing , Methylation , Phytophthora/pathogenicity , Plant Diseases/genetics , Sequence Homology, Amino Acid , Glycine max/microbiology , Virulence/genetics
19.
New Phytol ; 229(6): 3424-3439, 2021 03.
Article in English | MEDLINE | ID: mdl-33251609

ABSTRACT

The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B. A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.


Subject(s)
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Plant Diseases , Plant Immunity , Plant Proteins , Subtilisins
20.
Phytopathology ; 111(1): 96-107, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33026300

ABSTRACT

Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.


Subject(s)
Phytophthora infestans , Solanum tuberosum , DNA Copy Number Variations , Disease Management , Phytophthora infestans/genetics , Plant Breeding , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL