Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Chemistry ; 30(10): e202303497, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38017237

ABSTRACT

Covalent organic frameworks (COFs) have recently drawn intense attention due to their potential applications in photocatalysis. Herein, we report a multifunctional COF which consists of triphenylamine (TPA) and 2,2'-bipyridine (2, 2'-bipy) entities. The obtained TAPA-BPy-COF is a heterogeneous photocatalyst and can efficiently catalyze the oxidative coupling of thiols to disulfides. In addition, TAPA-BPy-COF can be further metalated by Pd(II) via 2,2'-bipy-metal coordination. The generated Pd@TAPA-BPy-COF can highly promote photocatalytic synthesis of 3-cyanopyridines via cascade addition/cyclization of arylboronic acids with γ-ketodinitriles in heterogeneous way. This work has demonstrated the way for the rational design and preparation of more efficient photoactive COFs for photocatalysis.

2.
Angew Chem Int Ed Engl ; 63(8): e202314763, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-37983842

ABSTRACT

Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Metal-Organic Frameworks/therapeutic use , Nanomedicine , Porosity , Neoplasms/drug therapy
3.
J Am Chem Soc ; 145(3): 1475-1496, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36646043

ABSTRACT

Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.

4.
J Am Chem Soc ; 145(9): 4951-4956, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847546

ABSTRACT

Multicomponent reactions (MCRs), as a powerful one-pot combinatorial synthesis tool, have been recently applied to the synthesis of covalent organic frameworks (COFs). Compared with the thermally driven MCRs, the photocatalytic MCR-based COF synthesis has not yet been investigated. Herein, we first report the construction of COFs by a photocatalytic multicomponent reaction. Upon visible-light irradiation, a series of COFs with excellent crystallinity, stability, and permanent porosity are successfully synthesized via photoredox-catalyzed multicomponent Petasis reaction under ambient conditions. Additionally, the obtained Cy-N3-COF exhibits excellent photoactivity and recyclability for the visible-light-driven oxidative hydroxylation of arylboronic acids. The concept of photocatalytic multicomponent polymerization not only enriches the methodology for COF synthesis but also opens a new avenue for the construction of COFs that might not be possible with the existing synthetic methods based on thermally driven MCRs.

5.
Chem Soc Rev ; 51(15): 6307-6416, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35766373

ABSTRACT

Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.


Subject(s)
Metal-Organic Frameworks , Ions , Metal-Organic Frameworks/chemistry , Porosity
6.
J Am Chem Soc ; 144(15): 6681-6686, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35394764

ABSTRACT

Although chiral covalent organic frameworks (CCOFs) presence grows in thermal asymmetric catalysis, their application in equally important asymmetric photocatalysis has yet to begin. Herein, we first report a propargylamine-linked and quaternary ammonium bromide decorated porphyrin-CCOF which can highly promote visible-light-driven enantioselective photooxidation of sulfides to sulfoxides in water and in air. This methodology has also been applied to the synthesis of (R)-modafinil, a wakefulness-promoting medication used for the treatment of excessive sleepiness. This research might open a new way for the application of CCOFs in asymmetric photocatalysis.


Subject(s)
Metal-Organic Frameworks , Catalysis , Metals , Stereoisomerism , Sulfoxides , Water
7.
J Am Chem Soc ; 144(41): 18750-18755, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36215722

ABSTRACT

Although natural sunlight-mediated photocatalysis is a clean, efficient, and green approach to access organic products, its application in the synthesis of covalent organic frameworks (COFs), however, is still unprecedented. Herein, we first report the sunlight photocatalytic synthesis of COF under ambient conditions. Furthermore, this "window ledge" reaction generated benzoxazole-linked COF is stable and can be applied as a reusable photocatalyst to highly promote visible-light-driven aerobic oxidation of sulfides to sulfoxides. These results not only enrich the COF synthetic methodology but also open a new route to access COFs in a green and sustainable way.

8.
Inorg Chem ; 61(5): 2455-2462, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35061389

ABSTRACT

Incorporation of metal catalysis and organocatalysis has emerged as a promising way for developing new and valuable organic reactions. This catalytic strategy would potentially enable unprecedented transformations not possible by the existing metal catalysis or organocatalysis alone. Herein, we report an imine-linked chiral covalent organic framework (CCOF) achieved by the combination of a Au-N-heterocyclic-carbene (NHC-Au) monomer with its chiral secondary amine-containing counterpart via an updated direct synthetic approach. The obtained CCOF can be used as a reusable dual catalyst to highly promote the asymmetric aryl methanol oxidation-aldol relay reaction in a heterogeneous way. In addition, the CCOF-based shaped setup was also realized via a facile templating freeze-drying approach based on an eco-friendly chitosan material, by which the gram-scale asymmetric aerobic alcohol oxidation-aldol relay reaction was successfully achieved. The potential utility of this approach is highlighted by the preparation of many more new CCOF-based multifunctional heterogeneous catalysts to promote various asymmetric organic transformations in a facile and green way, and further progress might eventually allow CCOF catalysts to be developed for industrial processes.

9.
Angew Chem Int Ed Engl ; 61(25): e202115044, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35357070

ABSTRACT

A general and efficient organocatalytic asymmetric polymerization approach for the synthesis of chiral covalent organic frameworks (CCOFs) has been developed. With a chiral 2-methylpyrrolidine catalyst, a series of tris(N-salicylideneamine)-derived ß-ketoenamine-CCOFs are directly constructed from prochiral aldehyde- and primary amine-monomers. The adopted aminocatalytic asymmetric Schiff-base condensation herein is performed under ambient conditions with clear green synthetic advantages over the conventional acid-catalysed solvothermal methods. The obtained ß-ketoenamine-CCOFs can be further metalated by a solid-state coordination approach, and the resulting CuII @CCOFs can highly promote an asymmetric A3 -coupling reaction. Specifically, a CuII @CCOF@chitosan aerogel was fabricated as a highly efficient fixed-bed model reactor for scaled-up catalysis. The concept of aminocatalytic asymmetric polymerization might open a new way for constructing the CCOFs via asymmetric organocatalysis.

10.
Small ; 17(32): e2101368, 2021 08.
Article in English | MEDLINE | ID: mdl-34216420

ABSTRACT

Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine.


Subject(s)
Antineoplastic Agents , Metal-Organic Frameworks , Cell Line, Tumor , Hydrogen Peroxide , Metallocenes , Oxidation-Reduction
11.
J Org Chem ; 86(2): 1818-1826, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33370121

ABSTRACT

Metal N-heterocyclic carbene complexes (NHC-M) have been recognized as an important class of organometallic catalysts. Herein, we demonstrate that different NHC-M (M = Au and Pd) species can be simultaneously introduced into a single metal organic framework (MOF) by direct assembly of NHC-M-decorated ligands and metal ions under solvothermal conditions. The obtained UiO-67-Au/Pd-NHBC MOF with different organometallic NHC-M species can be a highly reusable dual catalyst to sequentially promote alkyne hydration-Suzuki coupling reaction. The potential utility of this strategy is highlighted by the preparation of many more new multicatalysts of this type for various organic transformations in a sequential way.

12.
J Org Chem ; 86(3): 3024-3032, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33416316

ABSTRACT

A quinoline-linked and ionic liquid-decorated covalent organic framework was prepared by incorporation of a multicomponent Povarov reaction and postsynthetic modification. The imidazolium and sulfonic acid-decorated COF-IM-SO3H can be a highly efficient Brønsted acid catalyst to promote the Biginelli reaction under solvent-free conditions in a heterogeneous way. In addition, a scaled-up Biginelli reaction has been readily realized over a COF-IM-SO3H@chitosan aerogel-based cup reactor.

13.
Inorg Chem ; 60(5): 3393-3400, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33595301

ABSTRACT

A novel covalent organic framework material COF-DM, which contains chelating coordination environments, was synthesized at the gram level under mild conditions. In addition, its Cu(II)-loaded complex of Cu(II)@COF-DM was prepared by impregnating COF-DM in an acetonitrile solution of CuCl2 via a solid-state coordination approach. The obtained Cu(II)-loaded Cu(II)@COF-DM can be used as a highly active heterogeneous catalyst to catalyze the alkyne-dihalomethane-amine coupling reactions.

14.
Inorg Chem ; 60(16): 12591-12601, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34337951

ABSTRACT

We report the construction of a porphyrin and imidazolium-ionic liquid (IL)-decorated and quinoline-linked covalent organic framework (COF, abbreviated as COF-P1-1) via a three-component one-pot Povarov reaction. After post-synthetic metallization of COF-P1-1 with Co(II) ions, the metallized COF-PI-2 is generated. COF-PI-2 is chemically stable and displays highly selective CO2 adsorption and good visible-light-induced photothermal conversion ability (ΔT = 26 °C). Furthermore, the coexistence of Co(II)-porphyrin and imidazolium-IL within COF-PI-2 has guaranteed its highly efficient activity for CO2 cycloaddition. Of note, the needed thermal energy for the reactions is derived from the photothermal conversion of the Co(II)-porphyrin COF upon visible-light irradiation. More importantly, the CO2 cycloaddition herein is a "window ledge" reaction, and it can proceed smoothly upon natural sunlight irradiation. In addition, a scaled-up CO2 cycloaddition can be readily achieved using a COF-PI-2@chitosan aerogel-based fixed-bed model reactor. Our research provides a new avenue for COF-based greenhouse gas disposal in an eco-friendly and energy- and source-saving way.

15.
J Am Chem Soc ; 142(29): 12574-12578, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32574049

ABSTRACT

(S)-2-(2-Chlorophenyl)-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetonitrile ((S)-CIK) is a key intermediate in the synthesis of (S)-clopidogrel, which is one of the most saleable worldwide antiplatelet and antithrombotic drugs. We show herein a facile method for the direct synthesis of (S)-CIK via Strecker reaction using a homochiral covalent framework catalyst in a heterogeneous way. The asymmetric synthesis involves a photothermal-conversion-triggered, thermally driven reaction which affords (S)-CIK in 98% yield with 94% enantiomeric excess under visible-light irradiation. Furthermore, the above approach is readily extended to a gram-scale level on a fixed-bed continuous-flow model reactor. The potential utility of this strategy is highlighted by the preparation of many more other types of chiral drugs and drug intermediates in a green and facile way.


Subject(s)
Acetonitriles/chemistry , Clopidogrel/chemical synthesis , Catalysis , Clopidogrel/chemistry , Models, Molecular , Molecular Structure , Particle Size , Surface Properties
16.
J Am Chem Soc ; 142(40): 16915-16920, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32941016

ABSTRACT

Direct synthesis, postsynthetic modification, and chiral induction have been recognized as three powerful methods to synthesize chiral covalent organic frameworks (CCOFs). However, catalytic asymmetric methodology, as the most important and effective synthetic approach to access chiral organics, has not been enabled for CCOFs synthesis thus far. Herein we report, for the first time, the construction of CCOFs from prochiral monomers via catalytic asymmetric polymerization. The obtained propargylamine-linked CCOFs can be the highly reusable chiral catalysts to promote asymmetric Michael addition reactions. The concept of catalytic asymmetric polymerization might open a new route for constructing the CCOFs that are not possible with the existing CCOF synthetic methods.

17.
J Am Chem Soc ; 142(14): 6521-6526, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32163281

ABSTRACT

Postsynthetic modification (PSM) has been demonstrated to be a powerful method for achieving new covalent organic frameworks (COFs) via single-step or multistep organic functional group transformations on established COF frameworks. PSM, however, might sometimes lead to collapse of the COF framework, decreases in crystallinity, or low postsynthetic yield due to the inherent limit of solid-state synthesis. Herein we report, for the first time, a new synthetic strategy that can generate new COFs via multicomponent one-pot in situ reactions. In total, 12 α-aminonitrile- and quinoline-linked COFs with high crystallinity and permanent porosity are successfully achieved by three-component one-pot in situ Strecker and Povarov reactions under solvothermal conditions in high yields. The obtained COFs feature the same structures as those obtained from the stepwise PSM approach on an established imine-linked COF. This in situ multicomponent assembly strategy, as a synthetic methodology parallel to PSM, might open a new route for constructing COFs that is not possible under PSM conditions.

18.
Chemistry ; 26(61): 13754-13770, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-32333481

ABSTRACT

Owing to their permanent porosity, highly ordered and extended structure, good chemical stability, and tunability, covalent organic frameworks (COFs) have emerged as a new type of organic materials that can offer various applications in different fields. Benefiting from the huge database of organic reactions, the required functionality of COFs can be readily achieved by modification of the corresponding organic functional groups on either polymerizable monomers or established COF frameworks. This striking feature allows homochiral covalent organic frameworks (HCCOFs) to be reasonably designed and synthesized, as well as their use as a unique platform to fabricate asymmetric catalysts. This contribution provides an overview of new progress in HCCOF-based asymmetric catalysis, including design, synthesis, and their application in asymmetric organic synthesis. Moreover, major challenges and developing trends in this field are also discussed. It is anticipated that this review article will provide some new insights into HCCOFs for heterogeneous asymmetric catalysis and help to encourage further contributions in this young but promising field.

19.
Chemistry ; 26(25): 5583-5591, 2020 May 04.
Article in English | MEDLINE | ID: mdl-31880368

ABSTRACT

As newly emerged crystalline porous materials, covalent organic frameworks (COFs) possess fascinating structures and some specific features such as modularity, crystallinity, porosity, stability, versatility, and biocompatibility. Besides adsorption/separation, sensing, catalysis, and energy applications, COFs have recently shown a promise in biomedical applications. This contribution provides an overview of the recent developments of COF-based medicines in cancer therapeutics, including drug delivery, photodynamic therapy (PDT), photothermal therapy (PTT), and combined therapy. Furthermore, the major challenges and developing trends in this field are also discussed. These recent developments are summarized and discussed to help encourage further contributions in this emerging and promising field.


Subject(s)
Metal-Organic Frameworks , Neoplasms/drug therapy , Photochemotherapy/methods , Adsorption , Catalysis , Humans , Porosity
20.
Angew Chem Int Ed Engl ; 59(41): 18042-18047, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32589819

ABSTRACT

Ca2+ , a ubiquitous but nuanced modulator of cellular physiology, is meticulously controlled intracellularly. However, intracellular Ca2+ regulation, such as mitochondrial Ca2+ buffering capacity, can be disrupted by 1 O2 . Thus, the intracellular Ca2+ overload, which is recognized as one of the important cell pro-death factors, can be logically achieved by the synergism of 1 O2 with exogenous Ca2+ delivery. Reported herein is a nanoscale covalent organic framework (NCOF)-based nanoagent, namely CaCO3 @COF-BODIPY-2I@GAG (4), which is embedded with CaCO3 nanoparticle (NP) and surface-decorated with BODIPY-2I as photosensitizer (PS) and glycosaminoglycan (GAG) targeting agent for CD44 receptors on digestive tract tumor cells. Under illumination, the light-triggered 1 O2 not only kills the tumor cells directly, but also leads to their mitochondrial dysfunction and Ca2+ overload. An enhanced antitumor efficiency is achieved via photodynamic therapy (PDT) and Ca2+ overload synergistic therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Boron Compounds/chemistry , Calcium Carbonate/chemistry , Neoplasms/drug therapy , Animals , Calcium Signaling , Cell Line, Tumor , Drug Synergism , Glycosylation , Humans , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photochemotherapy , Spectrum Analysis/methods , X-Ray Diffraction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL