Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Immunol ; 208(2): 203-211, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35017209

ABSTRACT

The ongoing arms race between hosts and microbes has fueled the evolution of novel strategies for diversifying the molecules involved in immune responses. Characterization of immune systems from an ever-broadening phylogenetic range of organisms reveals that there are many mechanisms by which this diversity can be generated and maintained. Diversification strategies operate at the level of populations, genomes, genes, and even individual transcripts. Lineage-specific innovations have been cataloged within the immune systems of both invertebrates and vertebrates. Furthermore, somatic diversification of immune receptor genes has now been described in jawless vertebrates and some invertebrate species. In addition to pathogen detection, immunological diversity plays important roles in several distinct allorecognition systems. In this Brief Review, we highlight some of the evolutionary innovations employed by a variety of metazoan species to generate the molecular diversity required to detect a vast array of molecules in the context of both immune response and self/nonself-recognition.


Subject(s)
Adaptive Immunity/genetics , Immunity, Cellular/genetics , Invertebrates/immunology , Receptors, Immunologic/genetics , Vertebrates/immunology , Adaptive Immunity/immunology , Animals , Biological Evolution , Evolution, Molecular , Genetic Variation/genetics , Immunity, Cellular/immunology , Invertebrates/genetics , Receptors, Immunologic/immunology , Vertebrates/genetics
2.
J Immunol ; 209(9): 1713-1723, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36113883

ABSTRACT

Cytokines of the TNF superfamily (TNFSF) control many immunological processes and are implicated in the etiology of many immune disorders and diseases. Despite their obvious biological importance, the TNFSF repertoires of many species remain poorly characterized. In this study, we perform detailed bioinformatic, phylogenetic, and syntenic analyses of five cartilaginous fish genomes to identify their TNFSF repertoires. Strikingly, we find that shark genomes harbor ∼30 TNFSF genes, more than any other vertebrate examined to date and substantially more than humans. This is due to better retention of the ancestral jawed vertebrate TNFSF repertoire than any other jawed vertebrate lineage, combined with lineage-specific gene family expansions. All human TNFSFs appear in shark genomes, except for lymphotoxin-α (LTA; TNFSF1) and TNF (TNFSF2), and CD70 (TNFSF7) and 4-1BBL (TNFSF9), which diverged by tandem duplications early in tetrapod and mammalian evolution, respectively. Although lacking one-to-one LTA and TNF orthologs, sharks have evolved lineage-specific clusters of LTA/TNF co-orthologs. Other key findings include the presence of two BAFF (TNFSF13B) genes along with orthologs of APRIL (TNFSF13) and BALM (TNFSF13C) in sharks, and that all cartilaginous fish genomes harbor an ∼400-million-year-old cluster of multiple FASLG (TNFSF6) orthologs. Finally, sharks have retained seven ancestral jawed vertebrate TNFSF genes lost in humans. Taken together, our data indicate that the jawed vertebrate ancestor possessed a much larger and diverse TNFSF repertoire than previously hypothesized and oppose the idea that the cartilaginous fish immune system is "primitive" compared with that of mammals.


Subject(s)
Sharks , Animals , Humans , Evolution, Molecular , Fishes , Genome , Lymphotoxin-alpha/genetics , Mammals/genetics , Phylogeny , Sharks/genetics , Vertebrates/genetics , Tumor Necrosis Factors/metabolism
3.
Fish Shellfish Immunol ; 106: 792-795, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32871248

ABSTRACT

Salmonid alphavirus (SAV), the causative agent of pancreas disease, is a serious pathogen of farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Given the economic impact of SAV outbreaks, much effort is focussed upon understanding the fish immune response following infection and the exploitation of this knowledge to reduce disease impact. Herein we examine the utility of the long-term Atlantic salmon kidney (ASK) cell line as a tool to study antiviral responses upon infection with SAV. Following infection with SAV subtype 1 (isolate V4640) we examined the kinetics and magnitude of induction of IFNa, IFN-regulatory factor (IRF) genes IRF1, IRF3, and IRF7b, as well as the antiviral effector Mx by RT-qPCR. SAV-1 non-structural protein (nsp1) transcript levels increased continuously over the experimental period, indicating viral replication, but cytopathic effect (CPE) was not observed. All the immune genes studied showed an increase in transcript levels over the 96-h study period following SAV infection, with strongest induction of Mx. Our data confirm that ASK cells are a suitable model to study the virus-associated immune responses of salmonids and may be a useful tool when assaying the effectiveness of potential prophylactic or antiviral treatments.


Subject(s)
Alphavirus Infections/immunology , Fish Diseases/immunology , Interferons/immunology , Kidney/cytology , Salmo salar/immunology , Alphavirus , Alphavirus Infections/genetics , Alphavirus Infections/veterinary , Animals , Cell Line , Fish Diseases/genetics , Gene Expression , Interferons/genetics , Salmo salar/genetics
4.
J Immunol ; 201(8): 2483-2491, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30194112

ABSTRACT

In mammals, haptoglobin (Hp) is an acute-phase plasma protein that binds with high affinity to hemoglobin (Hb) released by intravascular hemolysis. The resultant Hp-Hb complexes are bound and cleared by the scavenger receptor CD163, limiting Hb-induced oxidative damage. In this study, we show that Hp is a divergent member of the complement-initiating MASP family of proteins, which emerged in the ancestor of jawed vertebrates. We demonstrate that Hp has been independently lost from multiple vertebrate lineages, that characterized Hb-interacting residues of mammals are poorly conserved in nonmammalian species maintaining Hp, and that the extended loop 3 region of Hp, which mediates CD163 binding, is present only in mammals. We show that the Hb-binding ability of cartilaginous fish (nurse shark, Ginglymostoma cirratum; small-spotted catshark, Scyliorhinus canicula; and thornback ray, Raja clavata) and teleost fish (rainbow trout, Oncorhynchus mykiss) Hp is species specific, and where binding does occur it is likely mediated through a different structural mechanism to mammalian Hp. The continued, high-level expression of Hp in cartilaginous fishes in which Hb binding is not evident signals that Hp has (an)other, yet unstudied, role(s) in these species. Previous work indicates that mammalian Hp also has secondary, immunomodulatory functions that are independent of Hb binding; our work suggests these may be remnants of evolutionary more ancient functions, retained after Hb removal became the primary role of Hp in mammals.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Fish Proteins/metabolism , Haptoglobins/metabolism , Hemoglobins/metabolism , Mammals/immunology , Oncorhynchus mykiss/immunology , Receptors, Cell Surface/metabolism , Sharks/immunology , Acute-Phase Proteins , Animals , Biological Evolution , Cloning, Molecular , Fish Proteins/genetics , Genome/genetics , Haptoglobins/genetics , Hemolysis , Humans , Mannose-Binding Protein-Associated Serine Proteases/genetics , Phylogeny , Protein Binding , Species Specificity
5.
BMC Evol Biol ; 18(1): 169, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30442091

ABSTRACT

BACKGROUND: The cartilaginous fishes diverged from other jawed vertebrates ~ 450 million years ago (mya). Despite this key evolutionary position, the only high-quality cartilaginous fish genome available is for the elephant shark (Callorhinchus milii), a chimaera whose ancestors split from the elasmobranch lineage ~ 420 mya. Initial analysis of this resource led to proposals that key components of the cartilaginous fish adaptive immune system, most notably their array of T cell subsets, was primitive compared to mammals. This proposal is at odds with the robust, antigen-specific antibody responses reported in elasmobranchs following immunization. To explore this discrepancy, we generated a multi-tissue transcriptome for small-spotted catshark (Scyliorhinus canicula), a tractable elasmobranch model for functional studies. We searched this, and other newly available sequence datasets, for CD4+ T cell subset-defining genes, aiming to confirm the presence or absence of each subset in cartilaginous fishes. RESULTS: We generated a new transcriptome based on a normalised, multi-tissue RNA pool, aiming to maximise representation of tissue-specific and lowly expressed genes. We utilized multiple transcriptomic datasets and assembly variants in phylogenetic reconstructions to unambiguously identify several T cell subset-specific molecules in cartilaginous fishes for the first time, including interleukins, interleukin receptors, and key transcription factors. Our results reveal the inability of standard phylogenetic reconstruction approaches to capture the site-specific evolutionary processes of fast-evolving immune genes but show that site-heterogeneous mixture models can adequately do so. CONCLUSIONS: Our analyses reveal that cartilaginous fishes are capable of producing a range of CD4+ T cell subsets comparable to that of mammals. Further, that the key molecules required for the differentiation and functioning of these subsets existed in the jawed vertebrate ancestor. Additionally, we highlight the importance of considering phylogenetic diversity and, where possible, utilizing multiple datasets for individual species, to accurately infer gene presence or absence at higher taxonomic levels.


Subject(s)
Jaw/anatomy & histology , Lymphocyte Subsets/metabolism , Phylogeny , T-Lymphocytes, Regulatory/metabolism , Transcriptome/genetics , Vertebrates/genetics , Amino Acid Sequence , Animals , Biological Evolution , Female , Fishes/genetics , Genome , Sharks/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
6.
Immunogenetics ; 69(3): 187-192, 2017 03.
Article in English | MEDLINE | ID: mdl-28070614

ABSTRACT

The molecular machinery required for lymphocyte development and differentiation appears to have emerged concomitantly with distinct B- and T-like lymphocyte subsets in the ancestor of all vertebrates. The TNFSF superfamily (TNFSF) members BAFF (TNFSF13/Blys) and APRIL (TNFSF13) are key regulators of B cell development survival, and activation in mammals, but the temporal emergence of these molecules, and their precise relationship to the newly identified TNFSF gene BALM (BAFF and APRIL-like molecule), have not yet been elucidated. Here, to resolve the early evolutionary history of this family, we improved outgroup sampling and alignment quality, and applied better fitting substitution models compared to past studies. Our analyses reveal that BALM is a definitive TNFSF13 family member, which split from BAFF in the gnathostome (jawed vertebrate) ancestor. Most importantly, however, we show that both the APRIL and BAFF lineages existed in the ancestors of all extant vertebrates. This implies that APRIL has been lost, or is yet to be found, in cyclostomes (jawless vertebrates). Our results suggest that lineage-specific gene duplication and loss events have caused lymphocyte regulation, despite shared origins, to become secondarily distinct between gnathostomes and cyclostomes. Finally, the structure of lamprey BAFF-like, and its phylogenetic placement as sister to BAFF and BALM, but not the more slowly evolving APRIL, indicates that the primordial lymphocyte regulator was more APRIL-like than BAFF-like.


Subject(s)
B-Cell Activating Factor/genetics , B-Cell Activation Factor Receptor/genetics , Evolution, Molecular , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Vertebrates/genetics , Animals , Phylogeny
7.
Fish Shellfish Immunol ; 47(1): 381-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26386192

ABSTRACT

The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies.


Subject(s)
B-Cell Activating Factor/genetics , CD40 Ligand/genetics , Fish Proteins/genetics , Sharks/genetics , Amino Acid Sequence , Animals , B-Cell Activating Factor/chemistry , B-Cell Activating Factor/metabolism , CD40 Ligand/chemistry , CD40 Ligand/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Leukocytes/immunology , Mitogens/pharmacology , Pathogen-Associated Molecular Pattern Molecules/pharmacology , Phylogeny , Sequence Alignment/veterinary , Sharks/immunology , Sharks/metabolism
8.
Gen Comp Endocrinol ; 215: 117-31, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25623148

ABSTRACT

This article will review current knowledge on CXCR in fish, that represent three distinct vertebrate groups: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes) and Osteichthyes (bony fishes). With the sequencing of many fish genomes, information on CXCR in these species in particular has expanded considerably. In mammals, 6 CXCRs have been described, and their homologues will be initially reviewed before considering a number of atypical CXCRs and a discussion of CXCR evolution.


Subject(s)
Biological Evolution , Fishes/genetics , Receptors, CXCR/genetics , Vertebrates/genetics , Animals
9.
Am J Primatol ; 77(3): 296-308, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25296898

ABSTRACT

Kloss gibbons (Hylobates klossii) are endemic to the Mentawai Islands in Indonesia and have been subject to human predation for more than 2000 years in the absence of any other significant predators. We investigate the behavior of Kloss gibbons that may be attributed to avoiding human predation. We observed Kloss gibbons in the Peleonan forest in the north of Siberut Island, the northernmost of the Mentawai island chain, over 18 months in 2007 and 2008, and collected data on their singing behavior, the number of individuals present during different conditions and their responses to humans. We examine behaviors that may reduce the risk of predation by humans during singing (the most conspicuous gibbon behavior), daily non-singing activities and encounters with humans. The individual risk of being stalked by hunters is reduced by singing in same-sex choruses and the risk of successful capture by hunters during singing is reduced by singing less often during daylight hours and by leaving the location of male pre-dawn singing before full light (reducing the visual signal to hunters). Groups in the Peleonan also fission during non-singing daily activity and rarely engage in play or grooming, enhancing the crypticity of their monochromatic black pelage in the canopy. We also observed a coordinated response to the presence of humans, wherein one adult individual acted as a "decoy" by approaching and distracting human observers, while other group members fled silently in multiple directions. "Decoy" behavior occurred on 31% of 96 encounters with unhabituated Kloss gibbons that detected our presence. "Decoy" individuals may put themselves at risk to increase the survival of related immatures (and adult females with infants) who have a greater risk of predation. We argue that, in combination, these behaviors are an evolved response to a long history of predation by humans.


Subject(s)
Behavior, Animal/physiology , Hylobates/physiology , Predatory Behavior , Vocalization, Animal , Animals , Female , Forests , Humans , Indonesia , Male , Social Behavior
10.
Eur J Immunol ; 43(11): 3061-75, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23897025

ABSTRACT

B-lymphocyte-induced maturation protein 1 (Blimp-1) is the master regulator of plasma cell development, controlling genes such as those encoding J-chain and secretory Ig heavy chain. However, some mammalian plasma cells do not express J-chain, and mammalian B1 cells secrete "natural" IgM antibodies without upregulating Blimp-1. While these results have been controversial in mammalian systems, here we describe subsets of normally occurring Blimp-1(-) antibody-secreting cells in nurse sharks, found in lymphoid tissues at all ontogenic stages. Sharks naturally produce large amounts of both pentameric (classically "19S") and monomeric (classically "7S") IgM, the latter an indicator of adaptive immunity. Consistent with the mammalian paradigm, shark Blimp-1 is expressed in splenic 7S IgM-secreting cells, though rarely detected in the J-chain(+) cells producing 19S IgM. Although IgM transcript levels are lower in J-chain(+) cells, these cells nevertheless secrete 19S IgM in the absence of Blimp-1, as demonstrated by ELISPOT and metabolic labeling. Additionally, cells in the shark BM equivalent (epigonal) are Blimp-1(-). Our data suggest that, in sharks, 19S-secreting cells and other secreting memory B cells in the epigonal are maintained for long periods without Blimp-1, but like in mammals, Blimp-1 is required for terminating the B-cell program following an adaptive immune response in the spleen.


Subject(s)
Immunoglobulin J-Chains/biosynthesis , Immunoglobulin M/biosynthesis , Plasma Cells/metabolism , Repressor Proteins/metabolism , Sharks/immunology , Animals , Cell Differentiation/immunology , Immunoglobulin J-Chains/immunology , Immunoglobulin M/immunology , PAX5 Transcription Factor/biosynthesis , Plasma Cells/immunology , Spleen/metabolism , Up-Regulation
11.
Cell Chem Biol ; 31(5): 904-919.e11, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38547863

ABSTRACT

Programmed death-ligand 1 (PD-L1) drives inhibition of antigen-specific T cell responses through engagement of its receptor programmed death-1 (PD-1) on activated T cells. Overexpression of these immune checkpoint proteins in the tumor microenvironment has motivated the design of targeted antibodies that disrupt this interaction. Despite clinical success of these antibodies, response rates remain low, necessitating novel approaches to enhance performance. Here, we report the development of antibody fusion proteins that block immune checkpoint pathways through a distinct mechanism targeting molecular trafficking. By engaging multiple receptor epitopes on PD-L1, our engineered multiparatopic antibodies induce rapid clustering, internalization, and degradation in an epitope- and topology-dependent manner. The complementary mechanisms of ligand blockade and receptor downregulation led to more durable immune cell activation and dramatically reduced PD-L1 availability in mouse tumors. Collectively, these multiparatopic antibodies offer mechanistic insight into immune checkpoint protein trafficking and how it may be manipulated to reprogram immune outcomes.


Subject(s)
B7-H1 Antigen , Down-Regulation , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , Animals , Mice , Humans , Down-Regulation/drug effects , Mice, Inbred C57BL , Female , Cell Line, Tumor , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects
12.
Fish Shellfish Immunol ; 34(5): 1158-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23439398

ABSTRACT

Cartilaginous fishes are the oldest group in which an adaptive immune system based on immunoglobulin-superfamily members is found. This manuscript compares humoral immune function in small-spotted catshark (Scyliorhinus canicula) with that described for spiny dogfish (Squalus acanthias), another member of the Squalomorphi superorder, and nurse shark, the model for humoral immunity in elasmobranchs and a member of the Galeomorphi superorder. Although small-spotted catshark and nurse shark are separated by over 200 million years we found that immunoglobulin isoforms are well conserved between the two species. However, the plasma protein profile of small-spotted catshark was most similar to that of spiny dogfish, with low levels of pentameric IgM, and IgNAR present as a multimer in plasma rather than a monomer. We show that an antigen-specific monomeric IgM response, with a profile similar to that described previously for nurse sharks, can be raised in small-spotted catshark. Lacking polyclonal or monoclonal antibody reagents for detecting catshark IgNAR we investigated phage-display and recombinant Fc-fusion protein expression as alternative methods to look for an antigen-specific response for this isotype. However, we could find no evidence of an antigen-specific IgNAR in the animals tested using either of these techniques. Thus, unlike nurse sharks where antigen-specific monomeric IgM and IgNAR appear together, it seems there may be a temporal or complete 'uncoupling' of these isotypes during a humoral response in the small-spotted catshark.


Subject(s)
Immunity, Humoral , Immunoglobulins/genetics , Sharks/genetics , Sharks/immunology , Amino Acid Sequence , Animals , Blotting, Southern , DNA, Complementary/genetics , DNA, Complementary/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/genetics , Immunoglobulins/blood , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Scotland , Sequence Alignment , Sequence Analysis, DNA , Sharks/metabolism , Species Specificity , Squalus acanthias/genetics , Squalus acanthias/immunology , Squalus acanthias/metabolism
13.
Fish Shellfish Immunol ; 34(6): 1404-15, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23454429

ABSTRACT

CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies.


Subject(s)
Adjuvants, Immunologic/metabolism , CD79 Antigens/genetics , Fish Proteins/genetics , Gene Expression Regulation , Squalus acanthias/genetics , Squalus acanthias/immunology , 5' Flanking Region , Amino Acid Sequence , Animals , Base Sequence , CD79 Antigens/chemistry , CD79 Antigens/metabolism , Cloning, Molecular , Fish Proteins/chemistry , Fish Proteins/metabolism , Molecular Sequence Data , Organ Specificity , Phylogeny , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Sequence Alignment , Squalus acanthias/metabolism
14.
Front Immunol ; 14: 1245704, 2023.
Article in English | MEDLINE | ID: mdl-37638014

ABSTRACT

Germinal centers (GCs) are distinct microanatomical structures that form in the secondary lymphoid organs of endothermic vertebrates (i.e., mammals and some birds). Within GCs, B cells undergo a Darwinian selection process to identify clones which can respond to pathogen insult as well as affinity mature the B cell repertoire. The GC response ultimately generates memory B cells and bone marrow plasma cells which facilitate humoral immunological memory, the basis for successful vaccination programs. GCs have not been observed in the secondary lymphoid organs of ectothermic jawed vertebrates (i.e., fishes, reptiles, and amphibians). However, abundant research over the past decades has indicated these organisms can produce antigen specific B cell responses and some degree of affinity maturation. This review examines data demonstrating that the fundamentals of B cell selection may be more conserved across vertebrate phylogeny than previously anticipated. Further, research in both conventional mammalian model systems and comparative models raises the question of what evolutionary benefit GCs provide endotherms if they are seemingly unnecessary for generating the basic functional components of jawed vertebrate humoral adaptive immune responses.


Subject(s)
Biological Evolution , Germinal Center , Animals , B-Lymphocytes , Phylogeny , Bone Marrow Cells , Mammals
15.
Front Immunol ; 14: 1156219, 2023.
Article in English | MEDLINE | ID: mdl-37122697

ABSTRACT

Introduction: Cartilaginous fishes are the most evolutionary-distant vertebrates from mammals and possess an immunoglobulin (Ig)- and T cell-mediated adaptive immunity. CD8 is the hallmark receptor of cytotoxic T cells and is required for the formation of T cell receptor-major histocompatibility complex (TCR-MHC) class I complexes. Methods: RACE PCR was used to obtain gene sequences. Direct dilution was applied for the refolding of denatured recombinant CD8 protein. Hanging-drop vapor diffusion method was performed for protein crystallization. Results: In this study, CD8α and CD8ß orthologues (termed ScCD8α and ScCD8ß) were identified in small-spotted catshark (Scyliorhinus canicula). Both ScCD8α and ScCD8ß possess an extracellular immunoglobulin superfamily (IgSF) V domain as in previously identified CD8 proteins. The genes encoding CD8α and CD8ß are tandemly linked in the genomes of all jawed vertebrates studied, suggesting that they were duplicated from a common ancestral gene before the divergence of cartilaginous fishes and other vertebrates. We determined the crystal structure of the ScCD8α ectodomain homodimer at a resolution of 1.35 Å and show that it exhibits the typical topological structure of CD8α from endotherms. As in mammals, the homodimer formation of ScCD8αα relies upon interactions within a hydrophobic core although this differs in position and amino acid composition. Importantly, ScCD8αα shares the canonical cavity required for interaction with peptide-loaded MHC I in mammals. Furthermore, it was found that ScCD8α can co-immunoprecipitate with ScCD8ß, indicating that it can form both homodimeric and heterodimeric complexes. Conclusion: Our results expand the current knowledge of vertebrate CD8 dimerization and the interaction between CD8α with p/MHC I from an evolutionary perspective.


Subject(s)
Fishes , Vertebrates , Animals , CD8 Antigens/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Biological Evolution , Recombinant Proteins/genetics , Mammals
16.
Bioengineering (Basel) ; 10(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37370601

ABSTRACT

As COVID-19 pandemic public health measures are easing globally, the emergence of new SARS-CoV-2 strains continue to present high risk for vulnerable populations. The antibody-mediated protection acquired from vaccination and/or infection is seen to wane over time and the immunocompromised populations can no longer expect benefit from monoclonal antibody prophylaxis. Hence, there is a need to monitor new variants and its effect on vaccine performance. In this context, surveillance of new SARS-CoV-2 infections and serology testing are gaining consensus for use as screening methods, especially for at-risk groups. Here, we described an improved COVID-19 screening strategy, comprising predictive algorithms and concurrent, rapid, accurate, and quantitative SARS-CoV-2 antigen and host antibody testing strategy, at point of care (POC). We conducted a retrospective analysis of 2553 pre- and asymptomatic patients who were tested for SARS-CoV-2 by RT-PCR. The pre-screening model had an AUC (CI) of 0.76 (0.73-0.78). Despite being the default method for screening, body temperature had lower AUC (0.52 [0.49-0.55]) compared to case incidence rate (0.65 [0.62-0.68]). POC assays for SARS-CoV-2 nucleocapsid protein (NP) and spike (S) receptor binding domain (RBD) IgG antibody showed promising preliminary results, demonstrating a convenient, rapid (<20 min), quantitative, and sensitive (ng/mL) antigen/antibody assay. This integrated pre-screening model and simultaneous antigen/antibody approach may significantly improve accuracy of COVID-19 infection and host immunity screening, helping address unmet needs for monitoring vaccine effectiveness and severe disease surveillance.

17.
Cell Rep ; 42(7): 112664, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37342909

ABSTRACT

The absence of germinal centers (GCs) in cartilaginous fishes lies at odds with data showing that nurse sharks can produce robust antigen-specific responses and affinity mature their B cell repertoires. To investigate this apparent incongruity, we performed RNA sequencing on single nuclei, allowing us to characterize the cell types present in the nurse shark spleen, and RNAscope to provide in situ cellular resolution of key marker gene expression following immunization with R-phycoerythrin (PE). We tracked PE to the splenic follicles where it co-localizes with CXCR5high centrocyte-like B cells and a population of putative T follicular helper (Tfh) cells, surrounded by a peripheral ring of Ki67+ AID+ CXCR4+ centroblast-like B cells. Further, we reveal selection of mutations in B cell clones dissected from these follicles. We propose that the B cell sites identified here represent the evolutionary foundation of GCs, dating back to the jawed vertebrate ancestor.


Subject(s)
B-Lymphocytes , Germinal Center , Animals , Biological Evolution , Fishes/genetics , Vertebrates , T-Lymphocytes, Helper-Inducer
18.
Nat Commun ; 14(1): 580, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737435

ABSTRACT

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Single-Domain Antibodies , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Epitopes , Ferritins/genetics , Immunoglobulin Fc Fragments , Mice, Transgenic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Sharks
19.
Methods Mol Biol ; 2421: 57-72, 2022.
Article in English | MEDLINE | ID: mdl-34870811

ABSTRACT

Cartilaginous fishes (sharks, skates, rays, and chimeras) are the most phylogenetically distant lineage relative to mammals in which somatically rearranging immunoglobulins (Igs or antibodies) have also been found. Alongside their conventional (heavy-light chain) isotypes, IgM and IgW, sharks produce the novel isotype, IgNAR, a heavy-chain homodimer. Naturally lacking light chains, antigen binding is mediated by two highly soluble and independently functioning variable domains, or VNARs, each having a molecular weight of approximately 12 kDa. The small size, high affinity for antigen, and extreme structural stability of single-domain VNARs make them an emerging prospect for use in therapeutic, diagnostic, and research applications. In this chapter, we detail the immunization protocol we use to raise an antigen-specific IgNAR response in the nurse shark (Ginglymostoma cirratum), the subsequent cloning of the variable domains from this isotype, and the selection of antigen-specific VNARs by phage display.


Subject(s)
Sharks , Animals , Antibodies , Antigens , Clone Cells , Immunoglobulin Isotypes , Sharks/immunology
20.
Front Immunol ; 13: 873390, 2022.
Article in English | MEDLINE | ID: mdl-35734164

ABSTRACT

Many animals of scientific importance lack species-specific reagents (e.g., monoclonal antibodies) for in-depth studies of immune proteins. Mass spectrometry (MS)-based proteomics has emerged as a useful method for monitoring changes in protein abundance and modifications in non-model species. It can be used to quantify hundreds of candidate immune molecules simultaneously without the generation of new reagents. Here, we used MS-based proteomics to identify and quantify candidate immune proteins in the plasma of the nurse shark (Ginglymostoma cirratum), a cartilaginous fish and representative of the most basal extant vertebrate lineage with an immunoglobulin-based immune system. Mass spectrometry-based LC-MS/MS was performed on the blood plasma of nurse sharks immunized with human serum albumin (n=4) or sham immunized (n=1), and sampled at days 0 (baseline control), 1, 2, 3, 5, 7, 14, 21, 28, 25, 42 and 49. An antigen-specific antibody response was experimentally confirmed post-immunization. To provide a high-quality reference to identify proteins, we assembled and annotated a multi-tissue de novo transcriptome integrating long- and short-read sequence data. This comprised 62,682 contigs containing open reading frames (ORFs) with a length >80 amino acids. Using this transcriptome, we reliably identified 626 plasma proteins which were broadly categorized into coagulation, immune, and metabolic functional groups. To assess the feasibility of performing LC-MS/MS proteomics in nurse shark in the absence of species-specific protein annotations, we compared the results to an alternative strategy, mapping peptides to proteins predicted in the genome assembly of a related species, the whale shark (Rhincodon typus). This approach reliably identified 297 proteins, indicating that useful data on the plasma proteome may be obtained in many instances despite the absence of a species-specific reference protein database. Among the plasma proteins defined against the nurse shark transcriptome, fifteen showed consistent changes in abundance across the immunized shark individuals, indicating a role in the immune response. These included alpha-2-macroglobulin (A2M) and a novel protein yet to be characterized in diverse vertebrate lineages. Overall, this study enhances genetic and protein-level resources for nurse shark research and vastly improves our understanding of the elasmobranch plasma proteome, including its remodelling following immune stimulation.


Subject(s)
Proteome , Sharks , Animals , Chromatography, Liquid , Plasma , Proteome/metabolism , Sharks/genetics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL