Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Antimicrob Agents Chemother ; : e0032824, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842325

ABSTRACT

Miltefosine (MTS) is the only approved oral drug for treating leishmaniasis caused by intracellular Leishmania parasites that localize in macrophages of the liver, spleen, skin, bone marrow, and lymph nodes. MTS is extensively distributed in tissues and has prolonged elimination half-lives due to its high plasma protein binding, slow metabolic clearance, and minimal urinary excretion. Thus, understanding and predicting the tissue distribution of MTS help assess therapeutic and toxicologic outcomes of MTS, especially in special populations, e.g., pediatrics. In this study, a whole-body physiologically-based pharmacokinetic (PBPK) model of MTS was built on mice and extrapolated to rats and humans. MTS plasma and tissue concentration data obtained by intravenous and oral administration to mice were fitted simultaneously to estimate model parameters. The resulting high tissue-to-plasma partition coefficient values corroborate extensive distribution in all major organs except the bone marrow. Sensitivity analysis suggests that plasma exposure is most susceptible to changes in fraction unbound in plasma. The murine oral-PBPK model was further validated by assessing overlay of simulations with plasma and tissue profiles obtained from an independent study. Subsequently, the murine PBPK model was extrapolated to rats and humans based on species-specific physiological and drug-related parameters, as well as allometrically scaled parameters. Fold errors for pharmacokinetic parameters were within acceptable range in both extrapolated models, except for a slight underprediction in the human plasma exposure. These animal and human PBPK models are expected to provide reliable estimates of MTS tissue distribution and assist dose regimen optimization in special populations.

2.
J Antimicrob Chemother ; 79(7): 1547-1554, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38727613

ABSTRACT

INTRODUCTION: Post-kala-azar dermal leishmaniasis (PKDL) arises as a dermal complication following a visceral leishmaniasis (VL) infection. Current treatment options for PKDL are unsatisfactory, and there is a knowledge gap regarding the distribution of antileishmanial compounds within human skin. The present study investigated the skin distribution of miltefosine in PKDL patients, with the aim to improve the understanding of the pharmacokinetics at the skin target site in PKDL. METHODS: Fifty-two PKDL patients underwent treatment with liposomal amphotericin B (20 mg/kg) plus miltefosine (allometric dosing) for 21 days. Plasma concentrations of miltefosine were measured on study days 8, 15, 22 and 30, while a punch skin biopsy was taken on day 22. A physiologically based pharmacokinetic (PBPK) model was developed to evaluate the distribution of miltefosine into the skin. RESULTS: Following the allometric weight-based dosing regimen, median miltefosine concentrations on day 22 were 43.73 µg/g (IQR: 21.94-60.65 µg/g) in skin and 33.29 µg/mL (IQR: 25.9-42.58 µg/mL) in plasma. The median individual concentration ratio of skin to plasma was 1.19 (IQR: 0.79-1.9). In 87% (45/52) of patients, skin exposure was above the suggested EC90 PK target of 10.6 mg/L associated with in vitro susceptibility. Simulations indicated that the residence time of miltefosine in the skin would be more than 2-fold longer than in plasma, estimated by a mean residence time of 604 versus 266 hours, respectively. CONCLUSION: This study provides the first accurate measurements of miltefosine penetration into the skin, demonstrating substantial exposure and prolonged retention of miltefosine within the skin. These findings support the use of miltefosine in cutaneous manifestations of leishmaniasis. In combination with parasitological and clinical data, these results are critical for the future optimization of combination therapies with miltefosine in the treatment of PKDL.


Subject(s)
Amphotericin B , Antiprotozoal Agents , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Phosphorylcholine , Skin , Humans , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacokinetics , Phosphorylcholine/administration & dosage , Phosphorylcholine/therapeutic use , Antiprotozoal Agents/pharmacokinetics , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/therapeutic use , Male , Adult , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Female , Skin/parasitology , Leishmaniasis, Visceral/drug therapy , Middle Aged , Young Adult , Amphotericin B/pharmacokinetics , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Adolescent , Asia, Southern
3.
Ther Drug Monit ; 46(3): 410-414, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38287880

ABSTRACT

BACKGROUND: Tocilizumab in the treatment of rheumatoid arthritis (RA) is a potential candidate for concentration-guided tapering because the standard dose of tocilizumab results in a wide range of serum concentrations, usually above the presumed therapeutic window, and an exposure-response relationship has been described. However, no clinical trials have been published to date on this subject. Therefore, the objective of this study was to assess the feasibility of the tapering of intravenous (iv) tocilizumab with the use of a pharmacokinetic model-based algorithm in RA patients. METHODS: A randomized controlled trial with a double-blind design and follow-up of 24 weeks was conducted. RA patients who received the standard of tocilizumab for at least the past 24 weeks, which is 8 mg/kg every 4 weeks, were included. Patients with a tocilizumab serum concentration above 5 mg/L at trough were randomized between concentration-guided dose tapering, referred to as therapeutic drug monitoring (TDM), or the standard 8 mg/kg dose. In the TDM group, the tocilizumab dose was tapered with a recently published model-based algorithm to achieve a target concentration of 4-6 mg/L after 20 weeks of dose tapering. RESULTS: Twelve RA patients were included and 10 were randomized between the TDM and standard dose group. The study was feasible regarding the predefined feasibility criteria and patients had a positive attitude toward therapeutic drug monitoring. In the TDM group, the tocilizumab trough concentration within patients decreased on average by 24.5 ± 18.3 mg/L compared with a decrease of 2.8 ± 12 mg/L in the standard dose group. None of the patients in the TDM group reached the drug range of 4-6 mg/L. Instead, tocilizumab concentrations of 1.6 and 1.5 mg/L were found for the 2 patients who completed follow-up on the tapered dose. No differences in RA disease activity were observed between the 2 study groups. CONCLUSIONS: This study was the first to show that it is feasible to apply a dose-reduction algorithm based on a pharmacokinetic model in clinical practice. However, the current algorithm needs to be optimized before it can be applied on a larger scale.


Subject(s)
Algorithms , Antibodies, Monoclonal, Humanized , Arthritis, Rheumatoid , Drug Monitoring , Humans , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Arthritis, Rheumatoid/drug therapy , Double-Blind Method , Female , Middle Aged , Male , Drug Monitoring/methods , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/blood , Drug Tapering/methods , Feasibility Studies , Dose-Response Relationship, Drug , Aged , Adult
4.
Clin Infect Dis ; 76(3): e1177-e1185, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36164254

ABSTRACT

BACKGROUND: This study aimed to determine whether paromomycin plus miltefosine (PM/MF) is noninferior to sodium stibogluconate plus paromomycin (SSG/PM) for treatment of primary visceral leishmaniasis in eastern Africa. METHODS: An open-label, phase 3, randomized, controlled trial was conducted in adult and pediatric patients at 7 sites in eastern Africa. Patients were randomly assigned to either 20 mg/kg paromomycin plus allometric dose of miltefosine (14 days), or 20 mg/kg sodium stibogluconate plus 15 mg/kg paromomycin (17 days). The primary endpoint was definitive cure after 6 months. RESULTS: Of 439 randomized patients, 424 completed the trial. Definitive cure at 6 months was 91.2% (155 of 170) and 91.8% (156 of 170) in the PM/MF and SSG/PM arms in primary efficacy modified intention-to-treat analysis (difference, 0.6%; 97.5% confidence interval [CI], -6.2 to 7.4), narrowly missing the noninferiority margin of 7%. In the per-protocol analysis, efficacy was 92% (149 of 162) and 91.7% (155 of 169) in the PM/MF and SSG/PM arms (difference, -0.3%; 97.5% CI, -7.0 to 6.5), demonstrating noninferiority. Treatments were well tolerated. Four of 18 serious adverse events were study drug-related, and 1 death was SSG-related. Allometric dosing ensured similar MF exposure in children (<12 years) and adults. CONCLUSIONS: PM/MF and SSG/PM efficacies were similar, and adverse drug reactions were as expected given the drugs safety profiles. With 1 less injection each day, reduced treatment duration, and no risk of SSG-associated life-threatening cardiotoxicity, PM/MF is a more patient-friendly alternative for children and adults with primary visceral leishmaniasis in eastern Africa. CLINICAL TRIALS REGISTRATION: NCT03129646.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Visceral , Adult , Humans , Child , Paromomycin/adverse effects , Antiprotozoal Agents/adverse effects , Antimony Sodium Gluconate/adverse effects , Leishmaniasis, Visceral/drug therapy , Treatment Outcome , Drug Therapy, Combination , Africa, Eastern , Phosphorylcholine/adverse effects
5.
J Antimicrob Chemother ; 78(10): 2406-2418, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37638690

ABSTRACT

Pyronaridine-artesunate was recently strongly recommended in the 2022 update of the WHO Guidelines for the Treatment of Malaria, becoming the newest artemisinin-based combination therapy (ACT) for both uncomplicated Plasmodium falciparum and Plasmodium vivax malaria. Pyronaridine-artesunate, available as a tablet and paediatric granule formulations, is being adopted in regions where malaria treatment outcome is challenged by increasing chloroquine resistance. Pyronaridine is an old antimalarial agent that has been used for more than 50 years as a blood schizonticide, which exerts its antimalarial activity by interfering with the synthesis of the haemozoin pigment within the Plasmodium digestive vacuole. Pyronaridine exhibits a high blood-to-plasma distribution ratio due to its tendency to accumulate in blood cells. This feature is believed to play a crucial role in its pharmacokinetic (PK) properties and pharmacological activity. The PK characteristics of pyronaridine include rapid oral absorption, large volumes of distribution and low total body clearance, resulting in a long terminal apparent half-life. Moreover, differences in PK profiles have been observed between healthy volunteers and malaria-infected patients, indicating a potential disease-related impact on PK properties. Despite a long history, there is only limited knowledge of the clinical PK and pharmacodynamics of pyronaridine, particularly in special populations such as children and pregnant women. We here provide a comprehensive overview of the clinical pharmacology of pyronaridine in the treatment of malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Pregnancy , Humans , Child , Female , Malaria, Falciparum/drug therapy , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Malaria/drug therapy , Naphthyridines/pharmacology , Naphthyridines/therapeutic use , Chloroquine/therapeutic use
6.
J Antimicrob Chemother ; 78(11): 2702-2714, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37726401

ABSTRACT

OBJECTIVES: To improve visceral leishmaniasis (VL) treatment in Eastern Africa, 14- and 28-day combination regimens of paromomycin plus allometrically dosed miltefosine were evaluated. As the majority of patients affected by VL are children, adequate paediatric exposure to miltefosine and paromomycin is key to ensuring good treatment response. METHODS: Pharmacokinetic data were collected in a multicentre randomized controlled trial in VL patients from Kenya, Sudan, Ethiopia and Uganda. Patients received paromomycin (20 mg/kg/day for 14 days) plus miltefosine (allometric dose for 14 or 28 days). Population pharmacokinetic models were developed. Adequacy of exposure and target attainment of paromomycin and miltefosine were evaluated in children and adults. RESULTS: Data from 265 patients (59% ≤12 years) were available for this pharmacokinetic analysis. Paromomycin exposure was lower in paediatric patients compared with adults [median (IQR) end-of-treatment AUC0-24h 187 (162-203) and 242 (217-328) µg·h/mL, respectively], but were both within the IQR of end-of-treatment exposure in Kenyan and Sudanese adult patients from a previous study. Cumulative miltefosine end-of-treatment exposure in paediatric patients and adults [AUCD0-28 517 (464-552) and 524 (456-567) µg·day/mL, respectively] and target attainment [time above the in vitro susceptibility value EC90 27 (25-28) and 30 (28-32) days, respectively] were comparable to previously observed values in adults. CONCLUSIONS: Paromomycin and miltefosine exposure in this new combination regimen corresponded to the desirable levels of exposure, supporting the implementation of the shortened 14 day combination regimen. Moreover, the lack of a clear exposure-response and exposure-toxicity relationship indicated adequate exposure within the therapeutic range in the studied population, including paediatric patients.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Visceral , Humans , Adult , Child , Paromomycin/therapeutic use , Leishmaniasis, Visceral/drug therapy , Antiprotozoal Agents/pharmacokinetics , Kenya , Phosphorylcholine/therapeutic use , Phosphorylcholine/pharmacokinetics , Uganda , Treatment Outcome
7.
Br J Clin Pharmacol ; 89(10): 3016-3025, 2023 10.
Article in English | MEDLINE | ID: mdl-37194167

ABSTRACT

AIMS: Carboplatin is generally dosed based on a modified Calvert formula, in which the Cockcroft-Gault-based creatinine clearance (CRCL) is used as proxy for the glomerular filtration rate (GFR). The Cockcroft-Gault formula (CG) overpredicts CRCL in patients with an aberrant body composition. The CT-enhanced estimate of RenAl FuncTion (CRAFT) was developed to compensate for this overprediction. We aimed to evaluate whether carboplatin clearance is better predicted by CRCL based on the CRAFT compared to the CG. METHODS: Data of four previously conducted trials was used. The CRAFT was divided by serum creatinine to derive CRCL. The difference between CRAFT- and CG-based CRCL was assessed by population pharmacokinetic modelling. Furthermore, the difference in calculated carboplatin dose was assessed in a heterogeneous dataset. RESULTS: In total, 108 patients were included in the analysis. Addition of the CRAFT- and CG-based CRCL as covariate on carboplatin clearance led, respectively, to an improved model fit with a 26-point drop in objective function value and a worsened model fit with an increase of 8 points. In 19 subjects with serum creatinine <50 µmol/L, the calculated carboplatin dose was 233 mg higher using the CG. CONCLUSIONS: Carboplatin clearance is better predicted by CRAFT vs. CG-based CRCL. In subjects with low serum creatinine, the calculated carboplatin dose using CG exceeds the dose using CRAFT, which might explain the need for dose capping when using the CG. Therefore, the CRAFT might be an alternative for dose capping while still dosing accurately.


Subject(s)
Antineoplastic Agents , Humans , Carboplatin , Creatinine , Glomerular Filtration Rate , Kidney/physiology , Tomography, X-Ray Computed
8.
Ther Drug Monit ; 45(3): 354-363, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36917736

ABSTRACT

BACKGROUND: Recent studies have reported ethnic differences in vincristine exposure and outcomes such as toxicity. This resulted in the hypothesis of subtherapeutic dosing in African children. To optimize individual treatment, a strategy to identify subtherapeutic exposure using therapeutic drug monitoring is essential. The aim of the current study was to develop a strategy for therapeutic drug monitoring of vincristine in African children to meet the following criteria: (1) identify patients with low vincristine exposure with sufficient sensitivity (>70%), (2) determine vincristine exposure with a limited sampling strategy design of 3 samples, and (3) allow all samples to be collected within 4 hours after administration. METHODS: An in silico simulation study was performed using a previously described population pharmacokinetic model and real-life demographic dataset of Kenyan and Malawian pediatric oncology patients. Two different therapeutic drug monitoring strategies were evaluated: (1) Bayesian approach and (2) pharmacometric nomogram. The sampling design was optimized using the constraints described above. Sensitivity analysis was performed to investigate the influence of missing samples, erroneous sampling times, and different boundaries on the nomogram weight bands. RESULTS: With the Bayesian approach, 43.3% of the estimated individual exposure values had a prediction error of ≥20% owing to extremely high shrinkage. The Bayesian approach did not improve with alternative sampling designs within sampling constraints. However, the pharmacometric nomogram could identify patients with low vincristine exposure with a sensitivity, specificity, and accuracy of 75.1%, 76.4%, and 75.9%, respectively. The pharmacometric nomogram performed similarly for different weight bands. CONCLUSIONS: The pharmacometric nomogram was able to identify patients with low vincristine exposure with high sensitivity, with 3 blood samples collected at 1, 1.5, and 4 hours after administration. Missing samples should be avoided, and the 3 scheduled samples should be collected within 15, 5, and 15 minutes of 1, 1.5, and 4 hours after administration, respectively.


Subject(s)
Drug Monitoring , Neoplasms , Child , Humans , Vincristine/therapeutic use , Kenya , Bayes Theorem , Neoplasms/drug therapy
9.
Biomed Chromatogr ; 37(7): e5519, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36208186

ABSTRACT

Bioanalytical method development and validation for the quantification of antileishmanial drugs are pivotal to support clinical trials and provide the data necessary to conduct pharmacokinetic (PK) analysis. This review provides a comprehensive overview of published validated bioanalytical assays for the quantification of antileishmanial drugs amphotericin B, miltefosine, paromomycin, pentamidine, and pentavalent antimonials in human matrices. The applicability of the assays for leishmaniasis clinical trials as well as their relevance to PK studies with emphasis on the choice of matrix, calibration range, sample volume, sample preparation, choice of internal standards, separation, and detection was discussed for each antileishmanial drug. Given that no published bioanalytical methods included multiple antileishmanial drugs in a single assay although antileishmanial shortened combination regimens currently were under investigation, it was recommended to combine various drugs in a single bioanalytical method. Furthermore, bioanalytical method development regarding target site matrix as well as applying microsampling strategies was recommended to optimize future clinical PK studies in leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmaniasis , Humans , Antiprotozoal Agents/therapeutic use , Pentamidine/therapeutic use , Leishmaniasis/drug therapy , Amphotericin B/therapeutic use
10.
Ther Drug Monit ; 44(4): 520-526, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35094002

ABSTRACT

BACKGROUND: Most patients with cancer treated with everolimus experience stomatitis, which seriously affects the quality of life. The salivary concentrations of everolimus may predict the incidence and severity of stomatitis. The authors aimed to examine whether it was feasible to quantify the everolimus concentration in saliva and subsequently use it to predict stomatitis. METHODS: Saliva and whole blood samples were taken from patients with cancer, who were treated with everolimus in the dosage of either 10 mg once a day or 5 mg twice a day. Everolimus concentrations in saliva samples were measured by liquid chromatography-tandem mass spectrometry. A published population pharmacokinetic model was extended with the everolimus concentration in saliva to assess any association between everolimus in the blood and saliva. Subsequently, the association between the occurrence of stomatitis and the everolimus concentration in saliva was studied. RESULTS: Eleven patients were included in this study; saliva samples were available from 10 patients, including 3 patients with low-grade stomatitis. Everolimus concentrations were more than 100-fold lower in saliva than in whole blood (accumulation ratio 0.00801 and relative standard error 32.5%). Interindividual variability (67.7%) and residual unexplained variability (84.0%) were high. The salivary concentration of everolimus tended to be higher in patients with stomatitis, 1 hour postdose ( P = 0.14). CONCLUSIONS: Quantification of the everolimus concentration in saliva was feasible and revealed a nonsignificant correlation between everolimus concentration in the saliva and the occurrence of stomatitis. If future research proves this relationship to be significant, the everolimus concentration in the saliva may be used as an early predictor of stomatitis without invasive sampling. Thereby, in patients with high salivary everolimus concentrations, precautions can be taken to decrease the incidence and severity of stomatitis.


Subject(s)
Neoplasms , Stomatitis , Everolimus/adverse effects , Feasibility Studies , Humans , Neoplasms/drug therapy , Quality of Life , Saliva , Stomatitis/chemically induced
11.
Clin Infect Dis ; 73(5): 775-782, 2021 09 07.
Article in English | MEDLINE | ID: mdl-33580234

ABSTRACT

BACKGROUND: To expedite the development of new oral treatment regimens for visceral leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-term outcomes. METHODS: Data from 3 clinical trials were combined in this study, in which Eastern African VL patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative polymerase chain reaction (qPCR) before, during, and up to 6 months after treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to determine the power associated with the use of blood parasite load as a surrogate endpoint to predict clinical outcome at 6 months. RESULTS: The absolute parasite density on day 56 after start of treatment was found to be a highly sensitive predictor of relapse within 6 months of follow-up at a cutoff of 20 parasites/mL (area under the curve 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite loads (ρ = 0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical trial simulations indicated a > 80% power to detect a difference in cure rate between treatment regimens if this difference was high (> 50%) and when minimally 30 patients were included per regimen. CONCLUSIONS: Blood Leishmania parasite load determined by qPCR is a promising early biomarker to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new chemical entities.


Subject(s)
Leishmaniasis, Visceral , Parasites , Africa, Eastern , Animals , Biomarkers , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/drug therapy , Parasite Load
12.
Int J Cancer ; 149(8): 1576-1584, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34181276

ABSTRACT

Pemetrexed is an important component of first line treatment in patients with non-squamous non-small cell lung cancer. However, a limitation is the contraindication in patients with renal impairment due to hematological toxicity. Currently, it is unknown how to safely dose pemetrexed in these patients. The aim of our study was to elucidate the relationship between pemetrexed exposure and toxicity to support the development of a safe dosing regimen in patients with renal impairment. A population pharmacokinetic/pharmacodynamic analysis was performed based on phase II study results in three patients with renal dysfunction, supplemented with data from 106 patients in early clinical studies. Findings were externally validated with data of different pemetrexed dosing regimens. Alternative dosing regimens were evaluated using the developed model. We found that pemetrexed toxicity was driven by the time above a toxicity threshold concentration. The threshold for vitamin-supplemented patients was 0.110 mg/mL (95% CI: 0.092-0.146 mg/mL). It was observed that in patients with renal impairment (estimated glomerular filtration rate [eGFR]: <45 mL/min) the approved dose of 500 mg/m2 would yield a high probability of severe neutropenia in the range of 51.0% to 92.6%. A pemetrexed dose of 20 mg for patients (eGFR: 20 mL/min) is shown to be neutropenic-equivalent to the approved dose in patients with adequate renal function (eGFR: 90 mL/min), but would result in an approximately 13-fold lower area under the concentration-time curve. The pemetrexed exposure-toxicity relationship is explained by a toxicity threshold and substantially different from previously thought. Without prophylaxis for toxicity, it is unlikely that a therapeutic dose can be safely administered to patients with renal impairment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Folic Acid Antagonists/adverse effects , Kidney Failure, Chronic/chemically induced , Lung Neoplasms/drug therapy , Neutropenia/chemically induced , Pemetrexed/adverse effects , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Dietary Supplements , Dose-Response Relationship, Drug , Female , Folic Acid Antagonists/administration & dosage , Folic Acid Antagonists/pharmacokinetics , Follow-Up Studies , Humans , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/prevention & control , Lung Neoplasms/pathology , Male , Middle Aged , Neutropenia/epidemiology , Neutropenia/prevention & control , Pemetrexed/administration & dosage , Pemetrexed/pharmacokinetics , Prognosis , Tissue Distribution
13.
J Antimicrob Chemother ; 76(5): 1258-1268, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33677546

ABSTRACT

BACKGROUND: Despite high HIV co-infection prevalence in Ethiopian visceral leishmaniasis (VL) patients, the adequacy of antileishmanial drug exposure in this population and effect of HIV-VL co-morbidity on pharmacokinetics of antileishmanial and antiretroviral (ARV) drugs is still unknown. METHODS: HIV-VL co-infected patients received the recommended liposomal amphotericin B (LAmB) monotherapy (total dose 40 mg/kg over 24 days) or combination therapy of LAmB (total dose 30 mg/kg over 11 days) plus 28 days 100 mg/day miltefosine, with possibility to extend treatment for another cycle. Miltefosine, total amphotericin B and ARV concentrations were determined in dried blood spots or plasma using LC-MS/MS. RESULTS: Median (IQR) amphotericin B Cmax on Day 1 was 24.6 µg/mL (17.0-34.9 µg/mL), which increased to 40.9 (25.4-53.1) and 33.2 (29.0-46.6) µg/mL on the last day of combination and monotherapy, respectively. Day 28 miltefosine concentration was 18.7 (15.4-22.5) µg/mL. Miltefosine exposure correlated with amphotericin B accumulation. ARV concentrations were generally stable during antileishmanial treatment, although efavirenz Cmin was below the 1 µg/mL therapeutic target for many patients. CONCLUSIONS: This study demonstrates that antileishmanial drug exposure was low in this cohort of HIV co-infected VL patients. Amphotericin B Cmax was 2-fold lower than previously observed in non-VL patients. Miltefosine exposure in HIV-VL co-infected patients was 35% lower compared with adult VL patients in Eastern Africa, only partially explained by a 19% lower dose, possibly warranting a dose adjustment. Adequate drug exposure in these HIV-VL co-infected patients is especially important given the high proportion of relapses.


Subject(s)
Antiprotozoal Agents , HIV Infections , Leishmaniasis, Visceral , Pharmaceutical Preparations , Adult , Africa, Eastern , Antiprotozoal Agents/therapeutic use , Chromatography, Liquid , Cohort Studies , HIV Infections/complications , HIV Infections/drug therapy , Humans , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/epidemiology , Phosphorylcholine/therapeutic use , Tandem Mass Spectrometry , Treatment Outcome
14.
Pharmacogenomics J ; 21(3): 336-345, 2021 06.
Article in English | MEDLINE | ID: mdl-33649517

ABSTRACT

The anticancer drug docetaxel exhibits large interpatient pharmacokinetic and pharmacodynamic variability. In this study, we aimed to assess the functional significance of 14 polymorphisms in the CYP3A, CYP1B1, ABCB1, ABCC2, and SLCO1B3 genes for the pharmacokinetics and pharmacodynamics of oral docetaxel, co-administered with ritonavir. None of the tested CYP3A, ABCB1, ABCC2, and SLCO1B3 genotypes and diplotypes showed a significant relation with an altered bioavailability or clearance of either docetaxel or ritonavir. Similarly, no clear effect of CYP1B1 genotype on clinical outcomes was observed in a subgroup of non-small cell lung cancer (NSCLC) patients. Our post hoc power analysis indicated that our pharmacogenetic-pharmacokinetic analysis was only powered for relatively high effect sizes, which were to be expected given the high interpatient variability. This makes it unlikely that future studies will explain the high observed interpatient variability in oral docetaxel pharmacokinetics as a result of any of these separate polymorphisms and diplotypes.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Genetic Variation/genetics , Pharmacogenetics , Adult , Algorithms , Antineoplastic Agents, Phytogenic/administration & dosage , Biological Availability , Carcinoma, Non-Small-Cell Lung/drug therapy , Docetaxel/administration & dosage , Female , Genotype , Humans , Lung Neoplasms/drug therapy , Male , Middle Aged , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Ritonavir/administration & dosage
15.
J Antimicrob Chemother ; 75(11): 3260-3268, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32780098

ABSTRACT

BACKGROUND: Conventional miltefosine dosing (2.5 mg/kg/day) for treatment of visceral leishmaniasis (VL) is less effective in children than in adults. A higher allometric dose (median 3.2 mg/kg/day) was therefore investigated in paediatric VL patients in Eastern Africa. Results of this trial showed an unforeseen, lower than dose-proportional increase in exposure. Therefore, we performed a pooled model-based analysis of the paediatric data available from both dosing regimens to characterize observed non-linearities in miltefosine pharmacokinetics (PK). METHODS: Fifty-one children with VL were included in this analysis, treated with either a conventional (n = 21) or allometric (n = 30) miltefosine dosing regimen. PK data were analysed using non-linear mixed-effects modelling. RESULTS: A two-compartment model following first-order absorption and linear elimination, with two separate effects on relative oral bioavailability, was found to fit these data best. A 69% lower bioavailability at treatment start was estimated, presumably due to initial malnourishment and malabsorption. Stagnation in miltefosine accumulation in plasma, hampering increased drug exposure, was related to the increase in cumulative dose (mg/kg/day). However, the allometric regimen increased exposure 1.7-fold in the first treatment week and reduced the time to reach the PK target by 17.4%. CONCLUSIONS: Miltefosine PK in children suffering from VL are characterized by dose-dependent non-linearities that obstruct the initially expected exposure levels. Bioavailability appeared to be affected by the cumulative dose, possibly as a consequence of impaired absorption. Despite this, allometric dosing led to a faster target achievement and increased exposure compared with conventional dosing.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Visceral , Adult , Africa, Eastern , Antiprotozoal Agents/therapeutic use , Child , Humans , Leishmaniasis, Visceral/drug therapy , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/therapeutic use
16.
Invest New Drugs ; 38(5): 1526-1532, 2020 10.
Article in English | MEDLINE | ID: mdl-32306204

ABSTRACT

Introduction Oral formulations of docetaxel have successfully been developed as an alternative for intravenous administration. Co-administration with the enzyme inhibitor ritonavir boosts the docetaxel plasma exposure. In dose-escalation trials, the maximum tolerated doses for two different dosing regimens were established and dose-limiting toxicities (DLTs) were recorded. The aim of current analysis was to develop a pharmacokinetic (PK)-toxicodynamic (TOX) model to quantify the relationship between docetaxel plasma exposure and DLTs. Methods A total of 85 patients was included in the current analysis, 18 patients showed a DLT in the four-week observation period. A PK-TOX model was developed and simulations based on the PK-TOX model were performed. Results The final PK-TOX model was characterized by an effect compartment representing the toxic effect of docetaxel, which was linked to the probability of developing a DLT. Simulations of once-weekly, once-daily 60 mg and once-weekly, twice-daily 30 mg followed by 20 mg of oral docetaxel suggested that 14% and 34% of patients, respectively, would have a probability >25% to develop a DLT in a four-week period. Conclusions A PK-TOX model was successfully developed. This model can be used to evaluate the probability of developing a DLT following treatment with oral docetaxel and ritonavir in different dosing regimens.


Subject(s)
Antineoplastic Agents , Antineoplastic Combined Chemotherapy Protocols , Docetaxel , Models, Biological , Ritonavir , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/toxicity , Computer Simulation , Docetaxel/administration & dosage , Docetaxel/adverse effects , Docetaxel/pharmacokinetics , Docetaxel/toxicity , Humans , Ritonavir/administration & dosage , Ritonavir/adverse effects , Ritonavir/pharmacokinetics , Ritonavir/toxicity
17.
Ther Drug Monit ; 42(4): 532-539, 2020 08.
Article in English | MEDLINE | ID: mdl-32384536

ABSTRACT

BACKGROUND: For oral anticancer drugs, trough concentration (Cmin) is usually used as a target in therapeutic drug monitoring (TDM). Recording of Cmin is highly challenging in outpatients, in whom there is typically a variability in sample collection time after dosing. Various methods are used to estimate Cmin from the collected samples. This simulation study aimed to evaluate the performance of 3 different methods in estimating the Cmin of 4 oral anticancer drugs for which TDM is regularly performed. METHODS: Plasma concentrations of abiraterone, dabrafenib, imatinib, and pazopanib at a random time (Ct,sim) and at the end of the dosing interval (Cmin,sim) were simulated from population pharmacokinetic models including 1000 patients, and the values were converted into simulated observed concentrations (Ct,sim,obs and Cmin,sim,obs) by adding a residual error. From Ct, sim,obs, Cmin was predicted (Cmin,pred) by the Bayesian estimation (method 1), taking the ratio of the Ct,sim,obs and typical population concentration and multiplying this ratio with the typical population value of Cmin,sim (method 2), and log-linear extrapolation (method 3). Target attainment was assessed by comparing Cmin,pred with the proposed pharmacokinetic targets related to efficacy and calculating the positive predictive and negative predictive values. RESULTS: The mean relative prediction error and root mean squared relative prediction error results showed that method 3 was out-performed by method 1 and 2. Target attainment was adequately predicted by all 3 methods (the respective positive predictive value of method 1, 2, and 3 was 92.1%, 92.5%, and 93.1% for abiraterone; 87.3%, 86.9%, and 99.1% for dabrafenib; 79.3%, 79.3%, and 75.9% for imatinib; and 72.5%, 73.5%, and 67.6% for pazopanib), indicating that dose adjustments were correctly predicted. CONCLUSIONS: Both method 1 and 2 provided accurate and precise individual Cmin,pred values. However, method 2 was easier to implement than method 1 to guide individual dose adjustments in TDM programs.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Drug Monitoring/methods , Administration, Oral , Humans
18.
Clin Infect Dis ; 68(9): 1530-1538, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30188978

ABSTRACT

BACKGROUND: Convenient, safe, and effective treatments for visceral leishmaniasis in Eastern African children are lacking. Miltefosine, the only oral treatment, failed to achieve adequate efficacy, particularly in children, in whom linear dosing (2.5 mg/kg/day for 28 days) resulted in a 59% cure rate, with lower systemic exposure than in adults. METHODS: We conducted a Phase II trial in 30 children with visceral leishmaniasis, aged 4-12 years, to test whether 28 days of allometric miltefosine dosing safely achieves a higher systemic exposure than linear dosing. RESULTS: Miltefosine accumulated during treatment. Median areas under the concentration time curve from days 0-210 and plasma maximum concentration values were slightly higher than those reported previously for children on linear dosing, but not dose-proportionally. Miltefosine exposure at the start of treatment was increased, with higher median plasma concentrations on day 7 (5.88 versus 2.67 µg/mL). Concentration-time curves were less variable, avoiding the low levels of exposure observed with linear dosing. The 210-day cure rate was 90% (95% confidence interval, 73-98%), similar to that previously described in adults. There were 19 treatment-related adverse events (AEs), but none caused treatment discontinuation. There were 2 serious AEs: both were unrelated to treatment and both patients were fully recovered. CONCLUSIONS: Allometric miltefosine dosing achieved increased and less-variable exposure than linear dosing, though not reaching the expected exposure levels. The new dosing regimen safely increased the efficacy of miltefosine for Eastern African children with visceral leishmaniasis. Further development of miltefosine should adopt allometric dosing in pediatric patients. CLINICAL TRIALS REGISTRATION: NCT02431143.


Subject(s)
Antiprotozoal Agents/pharmacokinetics , Leishmaniasis, Visceral/drug therapy , Phosphorylcholine/analogs & derivatives , Africa, Eastern , Antiprotozoal Agents/blood , Antiprotozoal Agents/pharmacology , Area Under Curve , Child , Child, Preschool , Drug Administration Schedule , Female , Humans , Leishmania donovani/drug effects , Leishmania donovani/growth & development , Leishmania donovani/pathogenicity , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/pathology , Male , Patient Safety , Phosphorylcholine/blood , Phosphorylcholine/pharmacokinetics , Phosphorylcholine/pharmacology , Treatment Outcome
19.
Article in English | MEDLINE | ID: mdl-31036692

ABSTRACT

Host immune responses are pivotal for the successful treatment of the leishmaniases, a spectrum of infections caused by Leishmania parasites. Previous studies speculated that augmenting cytokines associated with a type 1 T-helper cell (Th1) response is necessary to combat severe forms of leishmaniasis, and it has been hypothesized that the antileishmanial drug miltefosine is capable of immunomodulation and induction of Th1 cytokines. A better understanding of the immunomodulatory effects of miltefosine is central to providing a rationale regarding synergistic mechanisms of activity to combine miltefosine optimally with other conventional and future antileishmanials that are currently under development. Therefore, a systematic literature search was performed to evaluate to what extent and how miltefosine influences the host Th1 response. Miltefosine's effects observed in both a preclinical and a clinical context associated with immunomodulation in the treatment of leishmaniasis are evaluated in this review. A total of 27 studies were included in the analysis. Based on the current evidence, miltefosine is not only capable of inducing direct parasite killing but also of modulating the host immunity. Our findings suggest that miltefosine-induced activation of Th1 cytokines, particularly represented by increased gamma interferon (IFN-γ) and interleukin 12 (IL-12), is essential to prevail over the Leishmania-driven Th2 response. Differences in miltefosine-induced host-mediated effects between in vitro, ex vivo, animal model, and human studies are further discussed. All things considered, an effective treatment with miltefosine is acquired by enhanced functional Th1 cytokine responses and may further be enhanced in combination with immunostimulatory agents.


Subject(s)
Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Immunomodulation/drug effects , Leishmaniasis/drug therapy , Phosphorylcholine/analogs & derivatives , Animals , Cytokines/metabolism , Humans , Leishmania/drug effects , Leishmaniasis/metabolism , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use
20.
Pharm Res ; 36(12): 181, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31732882

ABSTRACT

BACKGROUND: Docetaxel is commonly used in elderly patients, who are frequently diagnosed with prostate cancer. Although previous studies revealed no clinically relevant impact of older age on docetaxel pharmacokinetics (PK), this may be masked by indication. Metastatic castration-resistant prostate cancer (mCRPC) patients were reported to have approximately two-times lower systemic exposure compared to patients with other solid tumors. This study assessed the impact of older age on docetaxel PK, also considering the effect of indication on docetaxel PK. METHODS: Prospectively collected docetaxel PK data from patients aged ≥70 was pooled with PK data from an earlier published multicenter study. A 3-compartment population PK model, including multiple covariates, was used to describe docetaxel plasma concentration-time data. We added the effect of prostate cancer (mCRPC and metastatic hormone-sensitive prostate cancer (mHSPC)) on clearance to this model. Hereafter, we evaluated the additional impact of older age on docetaxel clearance, using a significance threshold of p < 0.005. RESULTS: Docetaxel plasma concentration-time data from 157 patients were analyzed. Median age in the total cohort was 67 years (range 31-87), with 49% of the total cohort aged ≥70. The impact of age on docetaxel clearance was statistically significant (p < 0.005). For a typical patient, a 10-year and 20-year increase of age led to a reduction in clearance of 17% and 34%, respectively. CONCLUSION: In this cohort study, age significantly and independently affected docetaxel clearance, showing lower docetaxel clearance in elderly patients. In our cohort, mCRPC and mHSPC patients both had higher clearance than patients with other solid tumors.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Docetaxel/pharmacokinetics , Neoplasms/drug therapy , Adult , Age Factors , Aged , Aged, 80 and over , Cohort Studies , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL