Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Proc Biol Sci ; 291(2014): 20231408, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38196349

ABSTRACT

Sleep benefits motor memory consolidation, which is mediated by sleep spindle activity and associated memory reactivations during non-rapid eye movement (NREM) sleep. However, the particular role of NREM2 and NREM3 sleep spindles and the mechanisms triggering this memory consolidation process remain unclear. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were collected during night-time sleep following the learning of a motor sequence task. Adopting a time-based clustering approach, we provide evidence that spindles iteratively occur within clustered and temporally organized patterns during both NREM2 and NREM3 sleep. However, the clustering of spindles in trains is related to motor memory consolidation during NREM2 sleep only. Altogether, our findings suggest that spindles' clustering and rhythmic occurrence during NREM2 sleep may serve as an intrinsic rhythmic sleep mechanism for the timed reactivation and subsequent consolidation of motor memories, through synchronized oscillatory activity within a subcortical-cortical network involved during learning.


Subject(s)
Memory Consolidation , Learning , Cluster Analysis , Memory , Sleep
2.
J Sleep Res ; 33(1): e14027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37794602

ABSTRACT

Targeted memory reactivation (TMR) during sleep enhances memory consolidation in young adults by modulating electrophysiological markers of neuroplasticity. Interestingly, older adults exhibit deficits in motor memory consolidation, an impairment that has been linked to age-related degradations in the same sleep features sensitive to TMR. We hypothesised that TMR would enhance consolidation in older adults via the modulation of these markers. A total of 17 older participants were trained on a motor task involving two auditory-cued sequences. During a post-learning nap, two auditory cues were played: one associated to a learned (i.e., reactivated) sequence and one control. Performance during two delayed re-tests did not differ between reactivated and non-reactivated sequences. Moreover, both associated and control sounds modulated brain responses, yet there were no consistent differences between the auditory cue types. Our results collectively demonstrate that older adults do not benefit from specific reactivation of a motor memory trace by an associated auditory cue during post-learning sleep. Based on previous research, it is possible that auditory stimulation during post-learning sleep could have boosted motor memory consolidation in a non-specific manner.


Subject(s)
Memory Consolidation , Memory , Young Adult , Humans , Aged , Memory/physiology , Memory Consolidation/physiology , Learning/physiology , Sleep/physiology , Cues
3.
Cereb Cortex ; 33(23): 11431-11445, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37814365

ABSTRACT

Motor imagery can, similarly to physical practice, improve motor performance through experience-based plasticity. Using magnetoencephalography, we investigated changes in brain activity associated with offline consolidation of motor sequence learning through physical practice or motor imagery. After an initial training session with either physical practice or motor imagery, participants underwent overnight consolidation. As control condition, participants underwent wake-related consolidation after training with motor imagery. Behavioral analyses revealed that overnight consolidation of motor learning through motor imagery outperformed wake-related consolidation (95% CI [0.02, 0.07], P < 0.001, RP2 = 0.05). As regions of interest, we selected the generators of event-related synchronization/desynchronization of alpha (8-12 Hz) and beta (15-30 Hz) oscillations, which predicted the level of performance on the motor sequence. This yielded a primary sensorimotor-premotor network for alpha oscillations and a cortico-cerebellar network for beta oscillations. The alpha network exhibited increased neural desynchronization after overnight consolidation compared to wake-related consolidation. By contrast, the beta network exhibited an increase in neural synchronization after wake-related consolidation compared to overnight consolidation. We provide the first evidence of parallel brain plasticity underlying behavioral changes associated with sleep-dependent consolidation of motor skill learning through motor imagery and physical practice.


Subject(s)
Memory Consolidation , Psychomotor Performance , Humans , Learning , Motor Skills , Sleep , Neuronal Plasticity
4.
Cereb Cortex ; 33(10): 6120-6131, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36587288

ABSTRACT

In the last decade, the exclusive role of the hippocampus in human declarative learning has been challenged. Recently, we have shown that gains in performance observed in motor sequence learning (MSL) during the quiet rest periods interleaved with practice are associated with increased hippocampal activity, suggesting a role of this structure in motor memory reactivation. Yet, skill also develops offline as memory stabilizes after training and overnight. To examine whether the hippocampus contributes to motor sequence memory consolidation, here we used a network neuroscience strategy to track its functional connectivity offline 30 min and 24 h post learning using resting-state functional magnetic resonance imaging. Using a graph-analytical approach we found that MSL transiently increased network modularity, reflected in an increment in local information processing at 30 min that returned to baseline at 24 h. Within the same time window, MSL decreased the connectivity of a hippocampal-sensorimotor network, and increased the connectivity of a striatal-premotor network in an antagonistic manner. Finally, a supervised classification identified a low-dimensional pattern of hippocampal connectivity that discriminated between control and MSL data with high accuracy. The fact that changes in hippocampal connectivity were detected shortly after training supports a relevant role of the hippocampus in early stages of motor memory consolidation.


Subject(s)
Connectome , Hippocampus , Memory Consolidation , Memory Consolidation/physiology , Hippocampus/physiology , Hippocampus/ultrastructure , Humans , Male , Female , Young Adult , Adult , Magnetic Resonance Imaging , Nerve Net/physiology , Nerve Net/ultrastructure
5.
Mov Disord ; 38(4): 636-645, 2023 04.
Article in English | MEDLINE | ID: mdl-36802374

ABSTRACT

BACKGROUND: Parkinson's disease (PD) has traditionally been viewed as an α-synucleinopathy brain pathology. Yet evidence based on postmortem human and animal experimental models indicates that the spinal cord may also be affected. OBJECTIVE: Functional magnetic resonance imaging (fMRI) seems to be a promising candidate to better characterize spinal cord functional organization in PD patients. METHODS: Resting-state spinal fMRI was performed in 70 PD patients and 24 age-matched healthy controls, the patients being divided into three groups based on their motor symptom severity: PDlow (n = 24), PDmed (n = 22), and PDadv (n = 24) groups. A combination of independent component analysis (ICA) and a seed-based approach was applied. RESULTS: When pooling all participants, the ICA revealed distinct ventral and dorsal components distributed along the rostro-caudal axis. This organization was highly reproducible within subgroups of patients and controls. PD severity, assessed by Unified Parkinson's Disease Rating Scale (UPDRS) scores, was associated with a decrease in spinal functional connectivity (FC). Notably, we observed a reduced intersegmental correlation in PD as compared to controls, the latter being negatively associated with patients' upper-limb UPDRS scores (P = 0.0085). This negative association between FC and upper-limb UPDRS scores was significant between adjacent C4-C5 (P = 0.015) and C5-C6 (P = 0.20) cervical segments, levels associated with upper-limb functions. CONCLUSIONS: The present study provides the first evidence of spinal cord FC changes in PD and opens new avenues for the effective diagnosis and therapeutic strategies in PD. This underscores how spinal cord fMRI can serve as a powerful tool to characterize, in vivo, spinal circuits for a variety of neurological diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Magnetic Resonance Imaging/methods , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Disease Progression
6.
PLoS Biol ; 18(7): e3000789, 2020 07.
Article in English | MEDLINE | ID: mdl-32614823

ABSTRACT

In the absence of any task, both the brain and spinal cord exhibit spontaneous intrinsic activity organised in a set of functionally relevant neural networks. However, whether such resting-state networks (RSNs) are interconnected across the brain and spinal cord is unclear. Here, we used a unique scanning protocol to acquire functional images of both brain and cervical spinal cord (CSC) simultaneously and examined their spatiotemporal correspondence in humans. We show that the brain and spinal cord activities are strongly correlated during rest periods, and specific spinal cord regions are functionally linked to consistently reported brain sensorimotor RSNs. The functional organisation of these networks follows well-established anatomical principles, including the contralateral correspondence between the spinal hemicords and brain hemispheres as well as sensory versus motor segregation of neural pathways along the brain-spinal cord axis. Thus, our findings reveal a unified functional organisation of sensorimotor networks in the entire central nervous system (CNS) at rest.


Subject(s)
Brain/physiology , Rest/physiology , Spinal Cord/physiology , Adult , Brain Mapping , Cerebral Cortex/physiology , Female , Humans , Male , Nerve Net/physiology
7.
Proc Natl Acad Sci U S A ; 117(38): 23898-23903, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900965

ABSTRACT

Recent evidence suggests that gains in performance observed while humans learn a novel motor sequence occur during the quiet rest periods interleaved with practice (micro-offline gains, MOGs). This phenomenon is reminiscent of memory replay observed in the hippocampus during spatial learning in rodents. Whether the hippocampus is also involved in the production of MOGs remains currently unknown. Using a multimodal approach in humans, here we show that activity in the hippocampus and the precuneus increases during the quiet rest periods and predicts the level of MOGs before asymptotic performance is achieved. These functional changes were followed by rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that reactivates during the quiet periods of training undergoes structural plasticity. Our work points to the involvement of the hippocampal system in the reactivation of procedural memories.


Subject(s)
Hippocampus/physiology , Learning/physiology , Motor Skills/physiology , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Memory , Young Adult
8.
Neuroimage ; 253: 119111, 2022 06.
Article in English | MEDLINE | ID: mdl-35331873

ABSTRACT

The spinal cord is important for sensory guidance and execution of skilled movements. Yet its role in human motor learning is not well understood. Despite evidence revealing an active involvement of spinal circuits in the early phase of motor learning, whether long-term learning engages similar changes in spinal cord activation and functional connectivity remains unknown. Here, we investigated spinal-cerebral functional plasticity associated with learning of a specific sequence of visually-guided joystick movements (sequence task) over six days of training. On the first and last training days, we acquired high-resolution functional images of the brain and cervical cord simultaneously, while participants practiced the sequence or a random task while electromyography was recorded from wrist muscles. After six days of training, the subjects' motor performance improved in the sequence compared to the control condition. These behavioral changes were associated with decreased co-contractions and increased reciprocal activations between antagonist wrist muscles. Importantly, early learning was characterized by activation in the C8 level, whereas a more rostral activation in the C6-C7 was found during the later learning phase. Motor sequence learning was also supported by increased spinal cord functional connectivity with distinct brain networks, including the motor cortex, superior parietal lobule, and the cerebellum at the early stage, and the angular gyrus and cerebellum at a later stage of learning. Our results suggest that the early vs. late shift in spinal activation from caudal to rostral cervical segments synchronized with distinct brain networks, including parietal and cerebellar regions, is related to progressive changes reflecting the increasing fine control of wrist muscles during motor sequence learning.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/physiology , Humans , Learning/physiology , Spinal Cord
9.
Neuroimage ; 245: 118684, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34732324

ABSTRACT

Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms. By cross-referencing these human neuroimaging findings with knowledge acquired through neurophysiological recordings, our review demonstrates that spinal fMRI is a powerful tool for exploring, in vivo, the human spinal cord pathways. We report strong cross-validation between task-related and resting-state fMRI in accordance with well-known hemicord, postero-anterior and rostro-caudal organization of these pathways. We also highlight the specific advantages of using spinal fMRI in clinical settings to characterize better spinal-related impairments, predict disease progression, and guide the implementation of therapeutic interventions.


Subject(s)
Magnetic Resonance Imaging/methods , Spinal Cord/diagnostic imaging , Spinal Cord/physiology , Humans , Spinal Cord/anatomy & histology
10.
Neuroimage ; 223: 117323, 2020 12.
Article in English | MEDLINE | ID: mdl-32882377

ABSTRACT

Previous research has consistently demonstrated that older adults have difficulties transforming recently learned movements into robust, long-lasting memories (i.e., motor memory consolidation). One potential avenue to enhance consolidation in older individuals is the administration of transcranial direct current stimulation (tDCS) to task-relevant brain regions after initial learning. Although this approach has shown promise, the underlying cerebral correlates have yet to be revealed. Moreover, it is unknown whether the effects of tDCS are lateralized, an open question with implications for rehabilitative approaches following predominantly unilateral neurological injuries. In this research, healthy older adults completed a sequential motor task before and 6 h after receiving anodal or sham stimulation to right or left primary motor cortex (M1) while functional magnetic resonance images were acquired. Unexpectedly, anodal stimulation to right M1 following left-hand sequence learning significantly hindered consolidation as compared to a sham control, whereas no differences were observed with left M1 stimulation following right-hand learning. Impaired performance following right M1 stimulation was paralleled by sustained engagement of regions known to be critical for early learning stages, including the caudate nucleus and the premotor and parietal cortices. Thus, post-learning tDCS in older adults not only exerts heterogenous effects across the two hemispheres but can also disrupt ongoing memory processing.


Subject(s)
Functional Laterality , Learning/physiology , Memory Consolidation/physiology , Motor Cortex/physiology , Psychomotor Performance/physiology , Transcranial Direct Current Stimulation , Aged , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Movement
11.
Hum Brain Mapp ; 41(13): 3680-3695, 2020 09.
Article in English | MEDLINE | ID: mdl-32583940

ABSTRACT

Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.


Subject(s)
Aging/physiology , Connectome , Magnetic Resonance Spectroscopy , Motor Activity/physiology , Neuronal Plasticity/physiology , Sensorimotor Cortex/physiology , Serial Learning/physiology , Transcranial Direct Current Stimulation , gamma-Aminobutyric Acid/metabolism , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Psychomotor Performance/physiology , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/metabolism
12.
J Magn Reson Imaging ; 52(3): 766-775, 2020 09.
Article in English | MEDLINE | ID: mdl-32061044

ABSTRACT

BACKGROUND: Fractional anisotropy (FA) and mean diffusivity (MD) are frequently used to evaluate longitudinal changes in white matter (WM) microstructure. Recently, there has been a growing interest in identifying experience-dependent plasticity in gray matter using MD. Improving registration has thus become a major goal to enhance the detection of subtle longitudinal changes in cortical microstructure. PURPOSE: To optimize normalization of diffusion tensor images (DTI) to improve registration in gray matter and reduce variability associated with multisession registrations. STUDY TYPE: Prospective longitudinal study. SUBJECTS: Twenty-one healthy subjects (18-31 years old) underwent nine MRI scanning sessions each. FIELD STRENGTH/SEQUENCE: 3.0T, diffusion-weighted multiband-accelerated sequence, MP2RAGE sequence. ASSESSMENT: Diffusion-weighted images were registered to standard space using different pipelines that varied in the features used for normalization, namely, the nonlinear registration algorithm (FSL vs. ANTs), the registration target (FA-based vs. T1 -based templates), and the use of intermediate individual (FA-based or T1 -based) targets. We compared the across-session test-retest reproducibility error of these normalization approaches for FA and MD in white and gray matter. STATISTICAL TESTS: Reproducibility errors were compared using a repeated-measures analysis of variance with pipeline as the within-subject factor. RESULTS: The registration of FA data to the FMRIB58 FA atlas using ANTs yielded lower reproducibility errors in white matter (P < 0.0001) with respect to FSL. Moreover, using the MNI152 T1 template as the target of registration resulted in lower reproducibility errors for MD (P < 0.0001), whereas the FMRIB58 FA template performed better for FA (P < 0.0001). Finally, the use of an intermediate individual template improved reproducibility when registration of the FA images to the MNI152 T1 was carried out within modality (FA-FA) (P < 0.05), but not via a T1 -based individual template. DATA CONCLUSION: A normalization approach using ANTs to register FA images to the MNI152 T1 template via an individual FA template minimized test-retest reproducibility errors both for gray and white matter. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:766-775.


Subject(s)
White Matter , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Longitudinal Studies , Magnetic Resonance Imaging , Prospective Studies , Reproducibility of Results , White Matter/diagnostic imaging
13.
Anesthesiology ; 132(6): 1392-1406, 2020 06.
Article in English | MEDLINE | ID: mdl-32205548

ABSTRACT

BACKGROUND: Consciousness is supported by integrated brain activity across widespread functionally segregated networks. The functional magnetic resonance imaging-derived global brain signal is a candidate marker for a conscious state, and thus the authors hypothesized that unconsciousness would be accompanied by a loss of global temporal coordination, with specific patterns of decoupling between local regions and global activity differentiating among various unconscious states. METHODS: Functional magnetic resonance imaging global signals were studied in physiologic, pharmacologic, and pathologic states of unconsciousness in human natural sleep (n = 9), propofol anesthesia (humans, n = 14; male rats, n = 12), and neuropathological patients (n = 21). The global signal amplitude as well as the correlation between global signal and signals of local voxels were quantified. The former reflects the net strength of global temporal coordination, and the latter yields global signal topography. RESULTS: A profound reduction of global signal amplitude was seen consistently across the various unconscious states: wakefulness (median [1st, 3rd quartile], 0.46 [0.21, 0.50]) versus non-rapid eye movement stage 3 of sleep (0.30 [0.24, 0.32]; P = 0.035), wakefulness (0.36 [0.31, 0.42]) versus general anesthesia (0.25 [0.21, 0.28]; P = 0.001), healthy controls (0.30 [0.27, 0.37]) versus unresponsive wakefulness syndrome (0.22 [0.15, 0.24]; P < 0.001), and low dose (0.07 [0.06, 0.08]) versus high dose of propofol (0.04 [0.03, 0.05]; P = 0.028) in rats. Furthermore, non-rapid eye movement stage 3 of sleep was characterized by a decoupling of sensory and attention networks from the global network. General anesthesia and unresponsive wakefulness syndrome were characterized by a dissociation of the majority of functional networks from the global network. This decoupling, however, was dominated by distinct neuroanatomic foci (e.g., precuneus and anterior cingulate cortices). CONCLUSIONS: The global temporal coordination of various modules across the brain may distinguish the coarse-grained state of consciousness versus unconsciousness, while the relationship between the global and local signals may define the particular qualities of a particular unconscious state.


Subject(s)
Brain/pathology , Brain/physiopathology , Sleep/physiology , Unconsciousness/pathology , Unconsciousness/physiopathology , Adult , Animals , Brain/diagnostic imaging , Electroencephalography/methods , Female , Humans , Hypnotics and Sedatives/administration & dosage , Magnetic Resonance Imaging/methods , Male , Models, Animal , Propofol/administration & dosage , Rats , Unconsciousness/chemically induced
14.
Neuroimage ; 184: 901-915, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30300751

ABSTRACT

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.


Subject(s)
Image Processing, Computer-Assisted/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neural Networks, Computer , Spinal Cord/pathology , Humans , Magnetic Resonance Imaging/methods , Observer Variation , Pattern Recognition, Automated , Reproducibility of Results , Sensitivity and Specificity
15.
PLoS Biol ; 14(3): e1002429, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27032084

ABSTRACT

Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories.


Subject(s)
Memory Consolidation/physiology , Motor Skills , Odorants , Sleep Stages/physiology , Adult , Female , Humans , Male , Smell/physiology , Young Adult
16.
Neuroimage ; 169: 419-430, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29277652

ABSTRACT

Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions.


Subject(s)
Electroencephalography/methods , Functional Neuroimaging/methods , Hippocampus/physiology , Magnetic Resonance Imaging/methods , Memory Consolidation/physiology , Motor Activity/physiology , Nerve Net/physiology , Putamen/physiology , Sleep Stages/physiology , Thalamus/physiology , Adult , Female , Hippocampus/diagnostic imaging , Humans , Male , Putamen/diagnostic imaging , Serial Learning/physiology , Thalamus/diagnostic imaging , Young Adult
17.
PLoS Biol ; 13(6): e1002186, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26125597

ABSTRACT

The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.


Subject(s)
Brain/physiology , Learning/physiology , Motor Skills/physiology , Spinal Cord/physiology , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Young Adult
18.
Cereb Cortex ; 27(2): 1588-1601, 2017 02 01.
Article in English | MEDLINE | ID: mdl-26802074

ABSTRACT

Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect.


Subject(s)
Learning/physiology , Memory Consolidation/physiology , Memory/physiology , Motor Skills/physiology , Sleep/physiology , Aged , Aged, 80 and over , Aging/physiology , Female , Humans , Male , Middle Aged , Motor Activity/physiology , Neuronal Plasticity/physiology
19.
BMC Geriatr ; 18(1): 93, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29661156

ABSTRACT

BACKGROUND: Physical exercise, cognitive training, and vitamin D are low cost interventions that have the potential to enhance cognitive function and mobility in older adults, especially in pre-dementia states such as Mild Cognitive Impairment (MCI). Aerobic and progressive resistance exercises have benefits to cognitive performance, though evidence is somewhat inconsistent. We postulate that combined aerobic exercise (AE) and progressive resistance training (RT) (combined exercise) will have a better effect on cognition than a balance and toning control (BAT) intervention in older adults with MCI. We also expect that adding cognitive training and vitamin D supplementation to the combined exercise, as a multimodal intervention, will have synergistic efficacy. METHODS: The SYNERGIC trial (SYNchronizing Exercises, Remedies in GaIt and Cognition) is a multi-site, double-blinded, five-arm, controlled trial that assesses the potential synergic effect of combined AE and RT on cognition and mobility, with and without cognitive training and vitamin D supplementation in older adults with MCI. Two-hundred participants with MCI aged 60 to 85 years old will be randomized to one of five arms, four of which include combined exercise plus combinations of dual-task cognitive training (real vs. sham) and vitamin D supplementation (3 × 10,000 IU/wk. vs. placebo) in a quasi-factorial design, and one arm which receives all control interventions. The primary outcome measure is the ADAS-Cog (13 and plus modalities) measured at baseline and at 6 months of follow-up. Secondary outcomes include neuroimaging, neuro-cognitive performance, gait and mobility performance, and serum biomarkers of inflammation (C reactive protein and interleukin 6), neuroplasticity (brain-derived neurotropic factor), endothelial markers (vascular endothelial growth factor 1), and vitamin D serum levels. DISCUSSION: The SYNERGIC Trial will establish the efficacy and feasibility of a multimodal intervention to improve cognitive performance and mobility outcomes in MCI. These interventions may contribute to new approaches to stabilize and reverse cognitive-mobility decline in older individuals with MCI. TRIAL REGISTRATION: Identifier: NCT02808676. https://www.clinicaltrials.gov/ct2/show/NCT02808676 .


Subject(s)
Cognition/physiology , Cognitive Dysfunction/rehabilitation , Dietary Supplements , Exercise Therapy/methods , Exercise Tolerance/physiology , Gait/physiology , Resistance Training/methods , Aged , Aged, 80 and over , Cognitive Dysfunction/psychology , Double-Blind Method , Female , Humans , Male , Middle Aged , Treatment Outcome
20.
Hum Brain Mapp ; 38(3): 1676-1691, 2017 03.
Article in English | MEDLINE | ID: mdl-28009072

ABSTRACT

Motor learning is characterized by patterns of cerebello-striato-cortical activations shifting in time, yet the early dynamic and function of these activations remains unclear. Five groups of subjects underwent either continuous or intermittent theta-burst stimulation of one cerebellar hemisphere, or no stimulation just before learning a new motor sequence during fMRI scanning. We identified three phases during initial learning: one rapid, one slow, and one quasi-asymptotic performance phase. These phases were not changed by left cerebellar stimulation. Right cerebellar inhibition, however, accelerated learning and enhanced brain activation in critical motor learning-related areas during the first phase, continuing with reduced brain activation but high-performance in late phase. Right cerebellar excitation did not affect the early learning process, but slowed learning significantly in late phase, along with increased brain activation. We conclude that the right cerebellum is a key factor coordinating other neuronal loops in the early acquisition of an explicit motor sequential skill. Hum Brain Mapp 38:1676-1691, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cerebellar Cortex/physiology , Inhibition, Psychological , Learning Curve , Learning/physiology , Motor Activity/physiology , Neural Pathways/physiology , Analysis of Variance , Cerebellar Cortex/diagnostic imaging , Female , Functional Laterality/drug effects , Healthy Volunteers , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Oxygen/blood , Theta Rhythm/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL