Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cancer Immunol Immunother ; 67(9): 1437-1447, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30030557

ABSTRACT

The construction of a tumor-associated carbohydrate antigen-zwitterionic polysaccharide conjugate, Thomsen-nouveau-polysaccharide A1 (Tn-PS A1, where Tn = D-GalpNAc), has led to the development of a carbohydrate binding monoclonal antibody named Kt-IgM-8. Kt-IgM-8 was produced via hybridoma from Tn-PS A1 hyperimmunized Jackson Laboratory C57BL/6 mice, splenocytes and the murine myeloma cell line Sp2/0Ag14 with subsequent cloning on methyl cellulose semi-solid media. This in-house generated monoclonal antibody negates binding influenced from peptides, proteins, and lipids and preferentially binds monovalent Tn antigen as noted by ELISA, FACS, and glycan array technologies. Kt-IgM-8 demonstrated in vitro and in vivo tumor killing against the Michigan Cancer Foundation breast cell line 7 (MCF-7). In vitro tumor killing was observed using an LDH assay that measured antibody-induced complement-dependent cytotoxicity and these results were validated in an in vivo passive immunotherapy approach using an MCF-7 cell line-derived xenograft model. Kt-IgM-8 is effective in killing tumor cells at 30% cytotoxicity, and furthermore, it demonstrated approximately 40% reduction in tumor growth in the MCF-7 model.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/immunology , Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/therapy , Immunoglobulin M/immunology , Immunotoxins/pharmacology , Animals , Breast Neoplasms/immunology , Humans , Immunotoxins/immunology , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Polysaccharides/immunology , Polysaccharides/pharmacology , Xenograft Model Antitumor Assays
2.
Int J Mol Sci ; 18(5)2017 May 12.
Article in English | MEDLINE | ID: mdl-28498319

ABSTRACT

Circulating tumour cells (CTCs) are an emerging resource for monitoring cancer biomarkers. New technologies for CTC isolation and biomarker detection are increasingly sensitive, however, the ideal blood storage conditions to preserve CTC-specific mRNA biomarkers remains undetermined. Here we tested the preservation of tumour cells and CTC-mRNA over time in common anticoagulant ethylene-diamine-tetra-acetic acid (EDTA) and acid citrate dextrose solution B (Citrate) blood tubes compared to preservative-containing blood tubes. Blood samples spiked with prostate cancer cells were processed after 0, 24, 30, and 48 h storage at room temperature. The tumour cell isolation efficiency and the mRNA levels of the prostate cancer biomarkers androgen receptor variant 7 (AR-V7) and total AR, as well as epithelial cell adhesion molecule (EpCAM) were measured. Spiked cells were recovered across all storage tube types and times. Surprisingly, tumour mRNA biomarkers were readily detectable after 48 h storage in EDTA and Citrate tubes, but not in preservative-containing tubes. Notably, AR-V7 expression was detected in prostate cancer patient blood samples after 48 h storage in EDTA tubes at room temperature. This important finding presents opportunities for measuring AR-V7 expression from clinical trial patient samples processed within 48 h-a much more feasible timeframe compared to previous recommendations.


Subject(s)
Biomarkers, Tumor/blood , Blood Preservation/adverse effects , Blood Specimen Collection/adverse effects , Disposable Equipment/standards , Receptors, Androgen/blood , Biomarkers, Tumor/standards , Blood Preservation/instrumentation , Blood Preservation/standards , Blood Specimen Collection/instrumentation , Blood Specimen Collection/standards , Case-Control Studies , Cell Line, Tumor , Citrates/chemistry , Edetic Acid/chemistry , Epithelial Cell Adhesion Molecule/blood , Female , Humans , Male , Neoplastic Cells, Circulating/metabolism , Plastics/adverse effects , Plastics/chemistry , Prostatic Neoplasms/blood , Time Factors
3.
J Ovarian Res ; 17(1): 71, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566237

ABSTRACT

BACKGROUND: Ovarian cancer remains the deadliest of the gynecologic cancers in the United States. There have been limited advances in treatment strategies that have seen marked increases in overall survival. Thus, it is essential to continue developing and validating new treatment strategies and markers to identify patients who would benefit from the new strategy. In this report, we sought to further validate applications for a novel humanized anti-Sialyl Tn antibody-drug conjugate (anti-STn-ADC) in ovarian cancer. METHODS: We aimed to further test a humanized anti-STn-ADC in sialyl-Tn (STn) positive and negative ovarian cancer cell line, patient-derived organoid (PDO), and patient-derived xenograft (PDX) models. Furthermore, we sought to determine whether serum STn levels would reflect STn positivity in the tumor samples enabling us to identify patients that an anti-STn-ADC strategy would best serve. We developed a custom ELISA with high specificity and sensitivity, that was used to assess whether circulating STn levels would correlate with stage, progression-free survival, overall survival, and its value in augmenting CA-125 as a diagnostic. Lastly, we assessed whether the serum levels reflected what was observed via immunohistochemical analysis in a subset of tumor samples. RESULTS: Our in vitro experiments further define the specificity of the anti-STn-ADC. The ovarian cancer PDO, and PDX models provide additional support for an anti-STn-ADC-based strategy for targeting ovarian cancer. The custom serum ELISA was informative in potential triaging of patients with elevated levels of STn. However, it was not sensitive enough to add value to existing CA-125 levels for a diagnostic. While the ELISA identified non-serous ovarian tumors with low CA-125 levels, the sample numbers were too small to provide any confidence the STn ELISA would meaningfully add to CA-125 for diagnosis. CONCLUSIONS: Our preclinical data support the concept that an anti-STn-ADC may be a viable option for treating patients with elevated STn levels. Moreover, our STn-based ELISA could complement IHC in identifying patients with whom an anti-STn-based strategy might be more effective.


Subject(s)
Genital Neoplasms, Female , Ovarian Neoplasms , Humans , Female , Antigens, Tumor-Associated, Carbohydrate/metabolism , CA-125 Antigen , Enzyme-Linked Immunosorbent Assay , Biomarkers, Tumor
4.
Article in English | MEDLINE | ID: mdl-19724140

ABSTRACT

Elevated expression of insulin-like growth factor II (IGF-II) is frequently observed in a variety of human malignancies, including breast, colon and liver cancer. As IGF-II can deliver a mitogenic signal through both the type 1 insulin-like growth factor receptor (IGF-IR) and an alternately spliced form of the insulin receptor (IR-A), neutralizing the biological activity of this growth factor directly is an attractive therapeutic option. One method of doing this would be to find antibodies that bind tightly and specifically to the peptide, which could be used as protein therapeutics to lower the peptide levels in vivo and/or to block the peptide from binding to the IGF-IR or IR-A. To address this, Fabs were selected from a phage-display library using a biotinylated precursor form of the growth factor known as IGF-IIE as a target. Fabs were isolated that were specific for the E-domain C-terminal extension and for mature IGF-II. Four Fabs selected from the library were produced, complexed with IGF-II and set up in crystallization trials. One of the Fab-IGF-II complexes (M64-F02-IGF-II) crystallized readily, yielding crystals that diffracted to 2.2 A resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 50.7, b = 106.9, c = 110.7 A. There was one molecule of the complete complex in the asymmetric unit. The same Fab was also crystallized with a longer form of the growth factor, IGF-IIE. This complex crystallized in space group P2(1)2(1)2(1), with unit-cell parameters a = 50.7, b = 107, c = 111.5 A, and also diffracted X-rays to 2.2 A resolution.


Subject(s)
Immunoglobulin Fab Fragments/chemistry , Insulin-Like Growth Factor II/chemistry , Crystallization , Crystallography, X-Ray , Glycosylation , Humans , Protein Isoforms/chemistry
5.
Oncotarget ; 9(38): 24992-25007, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29861848

ABSTRACT

Metastatic castration resistant prostate cancer is one of the main causes of male cancer associated deaths worldwide. Development of resistance is inevitable in patients treated with anti-androgen therapies. This highlights a need for novel therapeutic strategies that would be aimed upstream of the androgen receptor (AR). Here we report that the novel small molecule anti-androgen, galeterone targets USP12 and USP46, two highly homologous deubiquitinating enzymes that control the AR-AKT-MDM2-P53 signalling pathway. Consequently, galeterone is effective in multiple models of prostate cancer including both castrate resistant and AR-negative prostate cancer. However, we have observed that USP12 and USP46 selectively regulate full length AR protein but not the AR variants. This is the first report of deubiquitinating enzyme targeting as a strategy in prostate cancer treatment which we show to be effective in multiple, currently incurable models of this disease.

6.
PLoS One ; 13(7): e0201314, 2018.
Article in English | MEDLINE | ID: mdl-30052649

ABSTRACT

The expression of Sialyl-Tn (STn) in tumors is associated with metastatic disease, poor prognosis, and reduced overall survival. STn is expressed on ovarian cancer biomarkers including CA-125 (MUC16) and MUC1, and elevated serum levels of STn in ovarian cancer patients correlate with lower five-year survival rates. In the current study, we humanized novel anti-STn antibodies and demonstrated the retention of nanomolar (nM) target affinity while maintaining STn antigen selectivity. STn antibodies conjugated to Monomethyl Auristatin E (MMAE-ADCs) demonstrated in vitro cytotoxicity specific to STn-expressing ovarian cancer cell lines and tumor growth inhibition in vivo with both ovarian cancer cell line- and patient-derived xenograft models. We further validated the clinical potential of these STn-ADCs through tissue cross-reactivity and cynomolgus monkey toxicity studies. No membrane staining for STn was present in any organs of human or cynomolgus monkey origin, and the toxicity profile was favorable and only revealed MMAE-class associated events with none being attributed to the targeting of STn. The up-regulation of STn in ovarian carcinoma in combination with high affinity and STn-specific selectivity of the mAbs presented herein warrant further investigation for anti-STn antibody-drug conjugates in the clinical setting.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Membrane Proteins/antagonists & inhibitors , Mucin-1 , Ovarian Neoplasms/drug therapy , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents, Immunological/immunology , CA-125 Antigen/immunology , Cell Line, Tumor , Female , Humans , Membrane Proteins/immunology , Mice , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Xenograft Model Antitumor Assays
7.
Oncotarget ; 9(33): 23289-23305, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29796189

ABSTRACT

Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations.

8.
J Leukoc Biol ; 80(4): 905-14, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16888085

ABSTRACT

LFA-1 (alpha(L)beta(2)) mediates cell-cell and cell-extracellular matrix adhesions essential for immune and inflammatory responses. One critical mechanism regulating LFA-1 activity is the conformational change of the ligand-binding alpha(L) I domain from low-affinity (LA), closed form, to the high-affinity (HA), open form. Most known integrin antagonists bind both forms. Antagonists specific for the HA alpha(L) I domain have not been described. Here, we report the identification and characterization of a human antibody AL-57, which binds to the alpha(L) I domain in a HA but not LA conformation. AL-57 was discovered by selection from a human Fab-displaying library using a locked-open HA I domain as target. AL-57 Fab-phage bound HA I domain-expressing K562 cells (HA cells) in a Mg(2+)-dependent manner. AL-57 IgG also bound HA cells and PBMCs, activated by Mg(2+)/EGTA, PMA, or DTT. The binding profile of AL-57 IgG on PBMCs was the same as that of ICAM-1, the main ligand of LFA-1. In contrast, an anti-alpha(L) murine mAb MHM24 did not distinguish between the HA and LA forms. Moreover, AL-57 IgG blocked ICAM-1 binding to HA cells with a potency greater than MHM24. It also inhibited ICAM-1 binding to PBMCs, blocked adhesion of HA cells to keratinocytes, and inhibited PHA-induced lymphocyte proliferation with potencies comparable with MHM24. These results indicate that specifically targeting the HA I domain is sufficient to inhibit LFA-1-mediated, adhesive functions. AL-57 represents a therapeutic candidate for treatment of inflammatory and autoimmune diseases.


Subject(s)
Antibodies, Monoclonal/pharmacology , Leukocytes, Mononuclear/drug effects , Lymphocyte Function-Associated Antigen-1/drug effects , Antibodies, Monoclonal/chemistry , Antigen-Antibody Reactions , Binding Sites , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Humans , Immunoglobulin G/pharmacology , Intercellular Adhesion Molecule-1/drug effects , Keratinocytes/drug effects , Lymphocyte Function-Associated Antigen-1/immunology , Molecular Sequence Data , Phytohemagglutinins/antagonists & inhibitors , Phytohemagglutinins/pharmacology , Structure-Activity Relationship
9.
Arthritis Rheumatol ; 68(2): 521-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26315469

ABSTRACT

OBJECTIVE: In rheumatoid arthritis (RA), destruction of articular cartilage by the inflamed synovium is considered to be driven by increased activities of proteolytic enzymes, including matrix metalloproteinases (MMPs). The purpose of this study was to investigate the therapeutic potential of selective inhibition of membrane type 1 MMP (MT1-MMP) and its combination with tumor necrosis factor (TNF) blockage in mice with collagen-induced arthritis (CIA). METHODS: CIA was induced in DBA/1 mice by immunization with bovine type II collagen. From the onset of clinical arthritis, mice were treated with MT1-MMP selective inhibitory antibody DX-2400 and/or TNFR-Fc fusion protein. Disease progression was monitored daily, and serum, lymph nodes, and affected paws were collected at the end of the study for cytokine and histologic analyses. For in vitro analysis, bone marrow-derived macrophages were stimulated with lipopolysaccharide for 24 hours in the presence of DX-2400 and/or TNFR-Fc to analyze cytokine production and phenotype. RESULTS: DX-2400 treatment significantly reduced cartilage degradation and disease progression in mice with CIA. Importantly, when combined with TNF blockade, DX-2400 acted synergistically, inducing long-term benefit. DX-2400 also inhibited the up-regulation of interleukin-12 (IL-12)/IL-23 p40 via polarization toward an M2 phenotype in bone marrow-derived macrophages. Increased production of IL-17 induced by anti-TNF, which correlated with an incomplete response to anti-TNF, was abrogated by combined treatment with DX-2400 in CIA. CONCLUSION: Targeting MT1-MMP provides a potential strategy for joint protection, and its combination with TNF blockade may be particularly beneficial in RA patients with an inadequate response to anti-TNF therapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Arthritis, Experimental/immunology , Cartilage, Articular/drug effects , Etanercept/pharmacology , Interleukin-12 Subunit p40/drug effects , Macrophages/drug effects , Matrix Metalloproteinase 14/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized , Arthritis, Experimental/pathology , Cartilage, Articular/pathology , Disease Progression , In Vitro Techniques , Interferon-gamma/drug effects , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-12 Subunit p40/immunology , Interleukin-17/immunology , Lipopolysaccharides/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/pathology , Macrophages/immunology , Matrix Metalloproteinase 14/immunology , Mice , Mice, Inbred DBA
10.
J Natl Cancer Inst ; 107(4)2015 Apr.
Article in English | MEDLINE | ID: mdl-25710962

ABSTRACT

BACKGROUND: Matrix metalloproteinase (MMP) 14 may mediate tumor progression through vascular and immune-modulatory effects. METHODS: Orthotopic murine breast tumors (4T1 and E0771 with high and low MMP14 expression, respectively; n = 5-10 per group) were treated with an anti-MMP14 inhibitory antibody (DX-2400), IgG control, fractionated radiation therapy, or their combination. We assessed primary tumor growth, transforming growth factor ß (TGFß) and inducible nitric oxide synthase (iNOS) expression, macrophage phenotype, and vascular parameters. A linear mixed model with repeated observations, with Mann-Whitney or analysis of variance with Bonferroni post hoc adjustment, was used to determine statistical significance. All statistical tests were two-sided. RESULTS: DX-2400 inhibited tumor growth compared with IgG control treatment, increased macrophage numbers, and shifted the macrophage phenotype towards antitumor M1-like. These effects were associated with a reduction in active TGFß and SMAD2/3 signaling. DX-2400 also transiently increased iNOS expression and tumor perfusion, reduced tissue hypoxia (median % area: control, 20.2%, interquartile range (IQR) = 6.4%-38.9%; DX-2400: 1.2%, IQR = 0.2%-3.2%, P = .044), and synergistically enhanced radiation therapy (days to grow to 800mm(3): control, 12 days, IQR = 9-13 days; DX-2400 plus radiation, 29 days, IQR = 26-30 days, P < .001) in the 4T1 model. The selective iNOS inhibitor, 1400W, abolished the effects of DX-2400 on vessel perfusion and radiotherapy. On the other hand, DX-2400 was not capable of inducing iNOS expression or synergizing with radiation in E0771 tumors. CONCLUSION: MMP14 blockade decreased immunosuppressive TGFß, polarized macrophages to an antitumor phenotype, increased iNOS, and improved tumor perfusion, resulting in reduced primary tumor growth and enhanced response to radiation therapy, especially in high MMP14-expressing tumors.


Subject(s)
Amidines/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Benzylamines/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/radiotherapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Macrophages/drug effects , Matrix Metalloproteinase 14/drug effects , Matrix Metalloproteinase 14/metabolism , Nitric Oxide Synthase Type II/drug effects , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Breast Neoplasms/blood supply , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Cell Line, Tumor , Dose Fractionation, Radiation , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Immunoglobulin G/blood , Macrophages/enzymology , Mammary Neoplasms, Experimental , Mice , Neovascularization, Pathologic , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Phenotype , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Up-Regulation
11.
Biochem Res Int ; 2011: 191670, 2011.
Article in English | MEDLINE | ID: mdl-21152183

ABSTRACT

MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs) caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies) against individual membrane-bound MMPs.

12.
Mol Cancer Ther ; 9(6): 1809-19, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20515953

ABSTRACT

Elevated expression of insulin-like growth factor-II (IGF-II) is frequently observed in a variety of human malignancies, including breast, colon, and liver cancer. As IGF-II can deliver a mitogenic signal through both IGF-IR and an alternately spliced form of the insulin receptor (IR-A), neutralizing the biological activity of this growth factor directly is a potential alternative option to IGF-IR-directed agents. Using a Fab-displaying phage library and a biotinylated precursor form of IGF-II (1-104 amino acids) as a target, we isolated Fabs specific for the E-domain COOH-terminal extension form of IGF-II and for mature IGF-II. One of these Fabs that bound to both forms of IGF-II was reformatted into a full-length IgG, expressed, purified, and subjected to further analysis. This antibody (DX-2647) displayed a very high affinity for IGF-II/IGF-IIE (K(D) value of 49 and 10 pmol/L, respectively) compared with IGF-I (approximately 10 nmol/L) and blocked binding of IGF-II to IGF-IR, IR-A, a panel of insulin-like growth factor-binding proteins, and the mannose-6-phosphate receptor. A crystal complex of the parental Fab of DX-2647 bound to IGF-II was resolved to 2.2 A. DX-2647 inhibited IGF-II and, to a lesser extent, IGF-I-induced receptor tyrosine phosphorylation, cellular proliferation, and both anchorage-dependent and anchorage-independent colony formation in various cell lines. In addition, DX-2647 slowed tumor progression in the Hep3B xenograft model, causing decreased tumoral CD31 staining as well as reduced IGF-IIE and IGF-IR phosphorylation levels. Therefore, DX-2647 offers an alternative approach to targeting IGF-IR, blocking IGF-II signaling through both IGF-IR and IR-A.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Insulin-Like Growth Factor II/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Animals , Antibodies, Monoclonal/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Humans , Immunohistochemistry , Mice , Signal Transduction/drug effects , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
13.
Cancer Res ; 69(4): 1517-26, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19208838

ABSTRACT

Inhibition of specific matrix metalloproteinases (MMP) is an attractive noncytotoxic approach to cancer therapy. MMP-14, a membrane-bound zinc endopeptidase, has been proposed to play a central role in tumor growth, invasion, and neovascularization. Besides cleaving matrix proteins, MMP-14 activates proMMP-2 leading to an amplification of pericellular proteolytic activity. To examine the contribution of MMP-14 to tumor growth and angiogenesis, we used DX-2400, a highly selective fully human MMP-14 inhibitory antibody discovered using phage display technology. DX-2400 blocked proMMP-2 processing on tumor and endothelial cells, inhibited angiogenesis, and slowed tumor progression and formation of metastatic lesions. The combination of potency, selectivity, and robust in vivo activity shows the potential of a selective MMP-14 inhibitor for the treatment of solid tumors.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents/therapeutic use , Cell Division/drug effects , Enzyme Inhibitors/therapeutic use , Matrix Metalloproteinase Inhibitors , Neovascularization, Pathologic/prevention & control , Animals , Antibodies, Monoclonal, Humanized , Breast Neoplasms/pathology , Cell Line, Tumor , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Female , Genes, Reporter , Humans , Immunohistochemistry , Mice , Neoplasm Invasiveness/pathology , Transfection , Transplantation, Heterologous , Umbilical Veins/cytology , Umbilical Veins/drug effects
14.
Neoplasia ; 9(11): 927-37, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18030361

ABSTRACT

Novel inhibitors of the urokinase-mediated plasminogen (plg) activation system are potentially of great clinical benefit as anticancer treatments. Using phage display, we identified DX-1000 a tissue factor pathway inhibitor-derived Kunitz domain protein which is a specific high-affinity inhibitor of plasmin (pln) (K(i) = 99 pM). When tested in vitro, DX-1000 blocks plasmin-mediated pro-matrix metalloproteinase-9 (proMMP-9) activation on cells and dose-dependently inhibits tube formation, while not significantly affecting hemostasis and coagulation. However, this low-molecular weight protein inhibitor ( approximately 7 kDa) exhibits rapid plasma clearance in mice and rabbits, limiting its potential clinical use in chronic diseases. After site-specific PEGylation, DX-1000 retains its activity and exhibits a decreased plasma clearance. This PEGylated derivative is effective in vitro, as well as potent in inhibiting tumor growth of green fluorescent protein (GFP)-labeled MDA-MB-231 cells. 4PEG-DX-1000 treatment causes a significant reduction of urokinase-type plasminogen activator (uPA) and plasminogen expressions, a reduction of tumor proliferation, and vascularization. 4PEG-DX-1000 treatment significantly decreases the level of active mitogen-activated protein kinase (MAPK) in the primary tumors and reduces metastasis incidence. Together, our results demonstrate the potential value of plasmin inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.


Subject(s)
Antifibrinolytic Agents/pharmacology , Antineoplastic Agents/pharmacology , Polyethylene Glycols/pharmacology , Animals , Antifibrinolytic Agents/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Blood Coagulation/drug effects , Cell Line , Dose-Response Relationship, Drug , Enzyme Precursors/antagonists & inhibitors , Female , Hemostasis/drug effects , Humans , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 9 , Matrix Metalloproteinase Inhibitors , Mice , Mice, Inbred BALB C , Rabbits , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/physiology
15.
J Mol Recognit ; 18(4): 327-33, 2005.
Article in English | MEDLINE | ID: mdl-15706605

ABSTRACT

Phage display technologies have been increasingly utilized for the generation of therapeutic, imaging and purification reagents for a number of biological targets. Using a variety of different approaches, we have developed antibodies with high specificity and affinity for various targets ranging from small peptides to large proteins, soluble or membrane-associated as well as to activated forms of enzymes. We have applied this approach to G-protein coupled receptors (GPCRs), often considered difficult targets for antibody therapeutics and targeting. Here we demonstrate the use of this technology for the identification of human antibodies targeting C5aR, the chemoattractant GPCR receptor for anaphylatoxin C5a. The N-terminal region (residues 1-31) of C5aR, one of the ligand binding sites, was synthesized, biotinylated and used as the target for selection. Three rounds of selection with our proprietary human Fab phage display library were performed. Screening of 768 isolates by phage ELISA identified 374 positive clones. Based on sequence alignment analysis, the positive clones were divided into 22 groups. Representative Fab clones from each group were reformatted into IgGs and tested for binding to C5aR-expressing cells, the differentiated U-937 cells. Flow cytometric analysis demonstrated that nine out of 16 reformatted IgGs bound to cells. Competition with a C5aR monoclonal antibody S5/1 which recognizes the same N-terminal region showed that S5/1 blocked the binding of positive cell binders to the peptide used for selections, indicating that the identified cell binding IgGs were specific to C5aR. These antibody binders represent viable candidates as therapeutic or imaging agents, illustrating that phage display technology provides a rapid means for developing antibodies to a difficult class of targets such as GPCRs.


Subject(s)
Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/isolation & purification , Membrane Proteins/immunology , Peptide Library , Receptors, Complement/immunology , Amino Acid Sequence , Cell Differentiation/drug effects , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin G/genetics , Immunoglobulin G/pharmacology , Molecular Sequence Data , Receptor, Anaphylatoxin C5a , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL