Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Biol Chem ; 299(11): 105300, 2023 11.
Article in English | MEDLINE | ID: mdl-37777157

ABSTRACT

Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.


Subject(s)
Models, Molecular , Ubiquitin-Specific Proteases , Binding Sites , Ubiquitin-Specific Proteases/chemistry , Ubiquitin-Specific Proteases/metabolism , Humans , Ubiquitination/genetics , Protein Structure, Tertiary , Crystallography, X-Ray , Substrate Specificity/genetics
2.
Blood ; 136(14): 1685-1697, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32559765

ABSTRACT

The contact system is composed of factor XII (FXII), prekallikrein (PK), and cofactor high-molecular-weight kininogen (HK). The globular C1q receptor (gC1qR) has been shown to interact with FXII and HK. We reveal the FXII fibronectin type II domain (FnII) binds gC1qR in a Zn2+-dependent fashion and determined the complex crystal structure. FXIIFnII binds the gC1qR trimer in an asymmetric fashion, with residues Arg36 and Arg65 forming contacts with 2 distinct negatively charged pockets. gC1qR residues Asp185 and His187 coordinate a Zn2+ adjacent to the FXII-binding site, and a comparison with the ligand-free gC1qR crystal structure reveals the anionic G1-loop becomes ordered upon FXIIFnII binding. Additional conformational changes in the region of the Zn2+-binding site reveal an allosteric basis for Zn2+ modulation of FXII binding. Mutagenesis coupled with surface plasmon resonance demonstrate the gC1qR Zn2+ site contributes to FXII binding, and plasma-based assays reveal gC1qR stimulates coagulation in a FXII-dependent manner. Analysis of the binding of HK domain 5 (HKD5) to gC1qR shows only 1 high-affinity binding site per trimer. Mutagenesis studies identify a critical G3-loop located at the center of the gC1qR trimer, suggesting steric occlusion as the mechanism for HKD5 asymmetric binding. Gel filtration experiments reveal that gC1qR clusters FXII and HK into a higher-order 500-kDa ternary complex. These results support the conclusion that extracellular gC1qR can act as a chaperone to cluster contact factors, which may be a prelude for initiating the cascades that drive bradykinin generation and the intrinsic pathway of coagulation.


Subject(s)
Allosteric Site , Binding Sites , Carrier Proteins/chemistry , Factor XII/chemistry , Kininogens/chemistry , Membrane Glycoproteins/chemistry , Mitochondrial Proteins/chemistry , Models, Molecular , Receptors, Complement/chemistry , Aged , Carrier Proteins/metabolism , Factor XII/metabolism , Female , Humans , Kinetics , Kininogens/metabolism , Ligands , Membrane Glycoproteins/metabolism , Mitochondrial Proteins/metabolism , Models, Biological , Molecular Dynamics Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Protein Conformation , Receptors, Complement/metabolism , Recombinant Proteins , Structure-Activity Relationship , Zinc/chemistry , Zinc/metabolism
3.
J Biol Chem ; 295(45): 15208-15209, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33158918

ABSTRACT

A careful balance between active-site and exosite contributions is critically important for the specificity of many proteases, but this balance is not yet defined for some of the serine proteases that serve as coagulation factors. Basavaraj and Krishnaswamy have closed an important gap in our knowledge of coagulation factor X activation by the intrinsic Xase complex by showing that exosite binding plays a critical role in this process, which they describe as a "dock and lock." This finding not only significantly enhances our understanding of this step in the coagulation cascade and highlights parallels with the prothrombinase complex, but will also provide a novel rationale for inhibitor development in the future.


Subject(s)
Blood Coagulation , Factor X , Cysteine Endopeptidases , Neoplasm Proteins
4.
Biochem J ; 477(4): 787-800, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32011657

ABSTRACT

Attenuating the function of protein arginine methyltransferases (PRMTs) is an objective for the investigation and treatment of several diseases including cardiovascular disease and cancer. Bisubstrate inhibitors that simultaneously target binding sites for arginine substrate and the cofactor (S-adenosylmethionine (SAM)) have potential utility, but structural information on their binding is required for their development. Evaluation of bisubstrate inhibitors featuring an isosteric guanidine replacement with two prominent enzymes PRMT1 and CARM1 (PRMT4) by isothermal titration calorimetry (ITC), activity assays and crystallography are reported. Key findings are that 2-aminopyridine is a viable replacement for guanidine, providing an inhibitor that binds more strongly to CARM1 than PRMT1. Moreover, a residue around the active site that differs between CARM1 (Asn-265) and PRMT1 (Tyr-160) is identified that affects the side chain conformation of the catalytically important neighbouring glutamate in the crystal structures. Mutagenesis data supports its contribution to the difference in binding observed for this inhibitor. Structures of CARM1 in complex with a range of seven inhibitors reveal the binding modes and show that inhibitors with an amino acid terminus adopt a single conformation whereas the electron density for equivalent amine-bearing inhibitors is consistent with preferential binding in two conformations. These findings inform the molecular basis of CARM1 ligand binding and identify differences between CARM1 and PRMT1 that can inform drug discovery efforts.


Subject(s)
Drug Discovery , Enzyme Inhibitors/metabolism , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Small Molecule Libraries/pharmacology , Arginine/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Glutamic Acid/metabolism , Humans , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Protein Binding , Protein Conformation , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics
5.
J Biol Chem ; 294(2): 424-436, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30373771

ABSTRACT

Ubiquitin-specific proteases (USPs) reverse ubiquitination and regulate virtually all cellular processes. Defined noncatalytic domains in USP4 and USP15 are known to interact with E3 ligases and substrate recruitment factors. No such interactions have been reported for these domains in the paralog USP11, a key regulator of DNA double-strand break repair by homologous recombination. We hypothesized that USP11 domains adjacent to its protease domain harbor unique peptide-binding sites. Here, using a next-generation phage display (NGPD) strategy, combining phage display library screening with next-generation sequencing, we discovered unique USP11-interacting peptide motifs. Isothermal titration calorimetry disclosed that the highest affinity peptides (KD of ∼10 µm) exhibit exclusive selectivity for USP11 over USP4 and USP15 in vitro Furthermore, a crystal structure of a USP11-peptide complex revealed a previously unknown binding site in USP11's noncatalytic ubiquitin-like (UBL) region. This site interacted with a helical motif and is absent in USP4 and USP15. Reporter assays using USP11-WT versus a binding pocket-deficient double mutant disclosed that this binding site modulates USP11's function in homologous recombination-mediated DNA repair. The highest affinity USP11 peptide binder fused to a cellular delivery sequence induced significant nuclear localization and cell cycle arrest in S phase, affecting the viability of different mammalian cell lines. The USP11 peptide ligands and the paralog-specific functional site in USP11 identified here provide a framework for the development of new biochemical tools and therapeutic agents. We propose that an NGPD-based strategy for identifying interacting peptides may be applied also to other cellular targets.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Crystallography, X-Ray , DNA Repair , Homologous Recombination , Humans , Kinetics , Ligands , Mice , Molecular Sequence Data , Peptides/genetics , Protein Domains , Thiolester Hydrolases/genetics , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitination
6.
J Biol Chem ; 293(45): 17362-17374, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30228188

ABSTRACT

Ubiquitin-specific protease 15 (USP15) regulates important cellular processes, including transforming growth factor ß (TGF-ß) signaling, mitophagy, mRNA processing, and innate immune responses; however, structural information on USP15's catalytic domain is currently unavailable. Here, we determined crystal structures of the USP15 catalytic core domain, revealing a canonical USP fold, including a finger, palm, and thumb region. Unlike for the structure of paralog USP4, the catalytic triad is in an inactive configuration with the catalytic cysteine ∼10 Å apart from the catalytic histidine. This conformation is atypical, and a similar misaligned catalytic triad has so far been observed only for USP7, although USP15 and USP7 are differently regulated. Moreover, we found that the active-site loops are flexible, resulting in a largely open ubiquitin tail-binding channel. Comparison of the USP15 and USP4 structures points to a possible activation mechanism. Sequence differences between these two USPs mainly map to the S1' region likely to confer specificity, whereas the S1 ubiquitin-binding pocket is highly conserved. Isothermal titration calorimetry monoubiquitin- and linear diubiquitin-binding experiments showed significant differences in their thermodynamic profiles, with USP15 displaying a lower affinity for monoubiquitin than USP4. Moreover, we report that USP15 is weakly inhibited by the antineoplastic agent mitoxantrone in vitro A USP15-mitoxantrone complex structure disclosed that the anthracenedione interacts with the S1' binding site. Our results reveal first insights into USP15's catalytic domain structure, conformational changes, differences between paralogs, and small-molecule interactions and establish a framework for cellular probe and inhibitor development.


Subject(s)
Catalytic Domain , Molecular Docking Simulation , Molecular Dynamics Simulation , Ubiquitin-Specific Proteases/chemistry , Humans , Protein Binding , Sequence Homology, Amino Acid , Ubiquitin/metabolism , Ubiquitin-Specific Proteases/metabolism
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 679-687, 2018 07.
Article in English | MEDLINE | ID: mdl-29627382

ABSTRACT

Monoacylglycerol lipases (MGL) are a subclass of lipases that predominantly hydrolyze monoacylglycerol (MG) into glycerol and fatty acid. MGLs are ubiquitous enzymes across species and play a role in lipid metabolism, affecting energy homeostasis and signaling processes. Structurally, MGLs belong to the α/ß hydrolase fold family with a cap covering the substrate binding pocket. Analysis of the known 3D structures of human, yeast and bacterial MGLs revealed striking similarity of the cap architecture. Since MGLs from different organisms share very low sequence similarity, it is difficult to identify MGLs based on the amino acid sequence alone. Here, we investigated whether the cap architecture could be a characteristic feature of this subclass of lipases with activity towards MG and whether it is possible to identify MGLs based on the cap shape. Through database searches, we identified the structures of five different candidate α/ß hydrolase fold proteins with unknown or reported esterase activity. These proteins exhibit cap architecture similarities to known human, yeast and bacterial MGL structures. Out of these candidates we confirmed MGL activity for the protein LipS, which displayed the highest structural similarity to known MGLs. Two further enzymes, Avi_0199 and VC1974, displayed low level MGL activities. These findings corroborate our hypothesis that this conserved cap architecture can be used as criterion to identify lipases with activity towards MGs.


Subject(s)
Bacteria/enzymology , Models, Molecular , Monoacylglycerol Lipases/chemistry , Monoglycerides/metabolism , Protein Domains , Amino Acid Sequence , Crystallography, X-Ray , Monoacylglycerol Lipases/metabolism , Sequence Alignment , Structure-Activity Relationship , Substrate Specificity
8.
J Biol Chem ; 291(13): 6610-24, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26811339

ABSTRACT

Pseudomonas aeruginosaproduces a number of alkylquinolone-type secondary metabolites best known for their antimicrobial effects and involvement in cell-cell communication. In the alkylquinolone biosynthetic pathway, the ß-ketoacyl-(acyl carrier protein) synthase III (FabH)-like enzyme PqsBC catalyzes the condensation of octanoyl-coenzyme A and 2-aminobenzoylacetate (2-ABA) to form the signal molecule 2-heptyl-4(1H)-quinolone. PqsBC, a potential drug target, is unique for its heterodimeric arrangement and an active site different from that of canonical FabH-like enzymes. Considering the sequence dissimilarity between the subunits, a key question was how the two subunits are organized with respect to the active site. In this study, the PqsBC structure was determined to a 2 Å resolution, revealing that PqsB and PqsC have a pseudo-2-fold symmetry that unexpectedly mimics the FabH homodimer. PqsC has an active site composed of Cys-129 and His-269, and the surrounding active site cleft is hydrophobic in character and approximately twice the volume of related FabH enzymes that may be a requirement to accommodate the aromatic substrate 2-ABA. From physiological and kinetic studies, we identified 2-aminoacetophenone as a pathway-inherent competitive inhibitor of PqsBC, whose fluorescence properties could be used forin vitrobinding studies. In a time-resolved setup, we demonstrated that the catalytic histidine is not involved in acyl-enzyme formation, but contributes to an acylation-dependent increase in affinity for the second substrate 2-ABA. Introduction of Asn into the PqsC active site led to significant activity toward the desamino substrate analog benzoylacetate, suggesting that the substrate 2-ABA itself supplies the asparagine-equivalent amino function that assists in catalysis.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , 4-Quinolones/chemistry , Acyl Coenzyme A/chemistry , Aminobenzoates/chemistry , Bacterial Proteins/chemistry , Pseudomonas aeruginosa/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , 4-Quinolones/metabolism , Acetophenones/chemistry , Acyl Coenzyme A/metabolism , Amino Acid Sequence , Aminobenzoates/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Binding Sites , Binding, Competitive , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Ligands , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/metabolism , Pseudomonas aeruginosa/enzymology , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment
9.
Nucleic Acids Res ; 42(2): 822-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24150941

ABSTRACT

Histone tail modifications control many nuclear processes by dictating the dynamic exchange of regulatory proteins on chromatin. Here we report novel insights into histone H3 tail structure in complex with the double PHD finger (DPF) of the lysine acetyltransferase MOZ/MYST3/KAT6A. In addition to sampling H3 and H4 modification status, we show that the DPF cooperates with the MYST domain to promote H3K9 and H3K14 acetylation, although not if H3K4 is trimethylated. Four crystal structures of an extended DPF alone and in complex with unmodified or acetylated forms of the H3 tail reveal the molecular basis of crosstalk between H3K4me3 and H3K14ac. We show for the first time that MOZ DPF induces α-helical conformation of H3K4-T11, revealing a unique mode of H3 recognition. The helical structure facilitates sampling of H3K4 methylation status, and proffers H3K9 and other residues for modification. Additionally, we show that a conserved double glycine hinge flanking the H3 tail helix is required for a conformational change enabling docking of H3K14ac with the DPF. In summary, our data provide the first observations of extensive helical structure in a histone tail, revealing the inherent ability of the H3 tail to adopt alternate conformations in complex with chromatin regulators.


Subject(s)
Histone Acetyltransferases/chemistry , Histones/chemistry , Acetylation , Amino Acid Sequence , Glycine/chemistry , Histone Acetyltransferases/metabolism , Histones/metabolism , Methylation , Models, Molecular , Molecular Sequence Data , Protein Processing, Post-Translational , Protein Structure, Secondary , Protein Structure, Tertiary
10.
Biochemistry ; 53(18): 2966-78, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24724799

ABSTRACT

The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFß signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened ß-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.


Subject(s)
Thiolester Hydrolases/chemistry , Amino Acid Sequence , Animals , Catalysis , Catalytic Domain , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Rats , Scattering, Small Angle , Sequence Alignment , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Ubiquitin/metabolism
11.
J Biol Chem ; 288(43): 31093-104, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24014019

ABSTRACT

Monoacylglycerol lipases (MGLs) play an important role in lipid catabolism across all kingdoms of life by catalyzing the release of free fatty acids from monoacylglycerols. The three-dimensional structures of human and a bacterial MGL were determined only recently as the first members of this lipase family. In addition to the α/ß-hydrolase core, they showed unexpected structural similarities even in the cap region. Nevertheless, the structural basis for substrate binding and conformational changes of MGLs is poorly understood. Here, we present a comprehensive study of five crystal structures of MGL from Bacillus sp. H257 in its free form and in complex with different substrate analogs and the natural substrate 1-lauroylglycerol. The occurrence of different conformations reveals a high degree of conformational plasticity of the cap region. We identify a specific residue, Ile-145, that might act as a gatekeeper restricting access to the binding site. Site-directed mutagenesis of Ile-145 leads to significantly reduced hydrolase activity. Bacterial MGLs in complex with 1-lauroylglycerol, myristoyl, palmitoyl, and stearoyl substrate analogs enable identification of the binding sites for the alkyl chain and the glycerol moiety of the natural ligand. They also provide snapshots of the hydrolytic reaction of a bacterial MGL at different stages. The alkyl chains are buried in a hydrophobic tunnel in an extended conformation. Binding of the glycerol moiety is mediated via Glu-156 and water molecules. Analysis of the structural features responsible for cap plasticity and the binding modes of the ligands suggests conservation of these features also in human MGL.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/chemistry , Monoacylglycerol Lipases/chemistry , Monoglycerides/chemistry , Bacillus/genetics , Bacterial Proteins/genetics , Crystallography, X-Ray , Humans , Hydrolysis , Monoacylglycerol Lipases/genetics , Monoglycerides/genetics , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1484-90, 2014 May.
Article in English | MEDLINE | ID: mdl-24816116

ABSTRACT

Lactate dehydrogenase A (LDH-A) is a key enzyme in anaerobic respiration that is predominantly found in skeletal muscle and catalyses the reversible conversion of pyruvate to lactate in the presence of NADH. LDH-A is overexpressed in many tumours and has therefore emerged as an attractive target for anticancer drug discovery. Crystal structures of human LDH-A in the presence of inhibitors have been described, but currently no structures of the apo or binary NADH-bound forms are available for any mammalian LDH-A. Here, the apo structure of human LDH-A was solved at a resolution of 2.1 Å in space group P4122. The active-site loop adopts an open conformation and the packing and crystallization conditions suggest that the crystal form is suitable for soaking experiments. The soaking potential was assessed with the cofactor NADH, which yielded a ligand-bound crystal structure in the absence of any inhibitors. The structures show that NADH binding induces small conformational changes in the active-site loop and an adjacent helix. A comparison with other eukaryotic apo LDH structures reveals the conservation of intra-loop interactions. The structures provide novel insight into cofactor binding and provide the foundation for soaking experiments with fragments and inhibitors.


Subject(s)
L-Lactate Dehydrogenase/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Ligands , Models, Molecular , NAD/chemistry , NAD/metabolism , Protein Conformation
13.
Biochim Biophys Acta ; 1821(7): 1012-21, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22561231

ABSTRACT

Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2Å and in complex with phenylmethylsulfonyl fluoride at 1.8Å resolution. In both structures, bMGL adopts an α/ß hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/chemistry , Monoacylglycerol Lipases/chemistry , Monoglycerides/chemistry , Phenylmethylsulfonyl Fluoride/chemistry , Amino Acid Sequence , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Conserved Sequence , Crystallography, X-Ray , Escherichia coli , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Molecular Sequence Data , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Monoglycerides/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein , Substrate Specificity
14.
Insect Biochem Mol Biol ; 161: 104001, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37619821

ABSTRACT

Leishmaniasis is a debilitating and often fatal neglected tropical disease. Males from sub-populations of the Leishmania-harbouring sandfly, Lutzomyia longipalpis, produce the diterpene sex and aggregation pheromone, sobralene, for which geranylgeranyl diphosphate (GGPP) is the likely isoprenoid precursor. We have identified a GGPP synthase (lzGGPPS) from L. longipalpis, which was recombinantly expressed in bacteria and purified for functional and kinetic analysis. In vitro enzymatic assays using LC-MS showed that lzGGPPS is an active enzyme, capable of converting substrates dimethylallyl diphosphate (DMAPP), (E)-geranyl diphosphate (GPP), (E,E)-farnesyl diphosphate (FPP) with co-substrate isopentenyl diphosphate (IPP) into (E,E,E)-GGPP, while (Z,E)-FPP was also accepted with low efficacy. Comparison of metal cofactors for lzGGPPS highlighted Mg2+ as most efficient, giving increased GGPP output when compared against other divalent metal ions tested. In line with previously characterised GGPPS enzymes, GGPP acted as an inhibitor of lzGGPPS activity. The molecular weight in solution of lzGGPPS was determined to be ∼221 kDa by analytical SEC, suggesting a hexameric assembly, as seen in the human enzyme, and representing the first assessment of GGPPS quaternary structure in insects.

15.
Methods Mol Biol ; 2591: 189-218, 2023.
Article in English | MEDLINE | ID: mdl-36350550

ABSTRACT

Phage display (PD) is a powerful method and has been extensively used to generate monoclonal antibodies and identify epitopes, mimotopes, and protein interactions. More recently, the combination of next-generation sequencing (NGS) with PD (NGPD) has revolutionized the capabilities of the method by creating large data sets of sequences from affinity selection-based approaches (biopanning) otherwise challenging to obtain. NGPD can monitor motif enrichment, allow tracking of the selection process over consecutive rounds, and highlight unspecific binders. To tackle the wealth of data obtained, bioinformatics tools have been developed that allow for identifying specific binding sequences (binders) that can then be validated. Here, we provide a detailed account of the use of NGPD experiments to identify ubiquitin-specific protease peptide ligands.


Subject(s)
Bacteriophages , Peptide Library , Ligands , Peptides , Deubiquitinating Enzymes
16.
J Thromb Haemost ; 21(9): 2378-2389, 2023 09.
Article in English | MEDLINE | ID: mdl-37068593

ABSTRACT

BACKGROUND: High-molecular weight kininogen (HK) circulates in plasma as a complex with zymogen prekallikrein (PK). HK is both a substrate and a cofactor for activated plasma kallikrein, and the principal exosite interactions occur between PK N-terminal apple domains and the C-terminal D6 domain of HK. OBJECTIVES: To determine the structure of the complex formed between PK apple domains and an HKD6 fragment and compare this with the coagulation factor XI (FXI)-HK complex. METHODS: We produced recombinant FXI and PK heavy chains (HCs) spanning all 4 apple domains. We cocrystallized PKHC (and subsequently FXIHC) with a 31-amino acid synthetic peptide spanning HK residues Ser565-Lys595 and determined the crystal structure. We also analyzed the full-length FXI-HK complex in solution using hydrogen deuterium exchange mass spectrometry. RESULTS: The 2.3Å PKHC-HK peptide crystal structure revealed that the HKD6 sequence WIPDIQ (Trp569-Gln574) binds to the apple 1 domain and HK FNPISDFPDT (Phe582-Thr591) binds to the apple 2 domain with a flexible intervening sequence resulting in a bent double conformation. A second 3.2Å FXIHC-HK peptide crystal structure revealed a similar interaction with the apple 2 domain but an alternate, straightened conformation of the HK peptide where residues LSFN (Leu579-Asn583) interacts with a unique pocket formed between the apple 2 and 3 domains. HDX-MS of full length FXI-HK complex in solution confirmed interactions with both apple 2 and apple 3. CONCLUSIONS: The alternate conformations and exosite binding of the HKD6 peptide likely reflects the diverging relationship of HK to the functions of PK and FXI.


Subject(s)
Factor XI , Kininogen, High-Molecular-Weight , Humans , Kininogen, High-Molecular-Weight/metabolism , Factor XI/metabolism , Prekallikrein/metabolism , Molecular Weight , Binding Sites , Kininogens/chemistry , Peptides/chemistry
17.
Science ; 379(6636): 996-1003, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893255

ABSTRACT

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.


Subject(s)
Carbohydrate Metabolism , L-Lactate Dehydrogenase , Metabolome , Humans , Fatty Acids/metabolism , L-Lactate Dehydrogenase/metabolism , Organ Specificity , Mass Spectrometry/methods , Allosteric Regulation
18.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36490346

ABSTRACT

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Cell Line, Tumor , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Glucocorticoid/metabolism , Signal Transduction , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/therapeutic use , Ubiquitin-Specific Peptidase 7/metabolism
19.
Biochemistry ; 50(37): 7995-8004, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21848306

ABSTRACT

Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening ß-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among ß-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/genetics , Amino Acid Sequence , Animals , Crystallization/methods , Crystallography, X-Ray/methods , Endopeptidases/metabolism , Humans , Mice , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary/physiology , Ubiquitin-Specific Proteases , Ubiquitins/chemistry , Ubiquitins/genetics , Ubiquitins/metabolism
20.
Dev Cell ; 11(6): 803-16, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17141156

ABSTRACT

We previously reported that p97/p47-assisted membrane fusion is important for the reassembly of organelles at the end of mitosis, but not for their maintenance during interphase. We have now identified a p97 adaptor protein, p37, which forms a complex with p97 in the cytosol and localizes to the Golgi and ER. siRNA experiments revealed that p37 is required for Golgi and ER biogenesis. Injection of anti-p37 antibodies into cells at different cell cycle stages showed that p37 plays an important role in both Golgi and ER maintenance during interphase as well as in their reassembly at the end of mitosis. In an in vitro Golgi reassembly assay, the p97/p37 complex has membrane fusion activity. In contrast to the p97/p47 pathway, this pathway requires p115-GM130 tethering and SNARE GS15, but not syntaxin5. Interestingly, although VCIP135 is also required, its deubiquitinating activity is unnecessary for p97/p37-mediated activities.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Mitosis/physiology , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Animals , Cell Cycle , Cloning, Molecular , Gene Library , HeLa Cells , Humans , Immunoprecipitation , Membrane Fusion , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Molecular Sequence Data , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Qa-SNARE Proteins/metabolism , RNA, Small Interfering/pharmacology , Saccharomyces cerevisiae , Sequence Homology, Amino Acid , Two-Hybrid System Techniques , Ubiquitin/metabolism , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL