Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Faraday Discuss ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842386

ABSTRACT

Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.

2.
Chembiochem ; 24(6): e202200566, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36418221

ABSTRACT

The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.


Subject(s)
Metalloproteins , Metalloproteins/chemistry , Protein Engineering/methods , Catalytic Domain , Catalysis , Enzymes/metabolism
3.
Chembiochem ; 22(20): 2951-2956, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34033201

ABSTRACT

Racemic camphor and isoborneol are readily available as industrial side products, whereas (1R)-camphor is available from natural sources. Optically pure (1S)-camphor, however, is much more difficult to obtain. The synthesis of racemic camphor from α-pinene proceeds via an intermediary racemic isobornyl ester, which is then hydrolyzed and oxidized to give camphor. We reasoned that enantioselective hydrolysis of isobornyl esters would give facile access to optically pure isoborneol and camphor isomers, respectively. While screening of a set of commercial lipases and esterases in the kinetic resolution of racemic monoterpenols did not lead to the identification of any enantioselective enzymes, the cephalosporin Esterase B from Burkholderia gladioli (EstB) and Esterase C (EstC) from Rhodococcus rhodochrous showed outstanding enantioselectivity (E>100) towards the butyryl esters of isoborneol, borneol and fenchol. The enantioselectivity was higher with increasing chain length of the acyl moiety of the substrate. The kinetic resolution of isobornyl butyrate can be easily integrated into the production of camphor from α-pinene and thus allows the facile synthesis of optically pure monoterpenols from a renewable side-product.


Subject(s)
Bicyclic Monoterpenes/chemistry , Camphor/chemical synthesis , Bicyclic Monoterpenes/metabolism , Burkholderia gladioli/enzymology , Camphor/chemistry , Camphor/metabolism , Cephalosporins/metabolism , Molecular Structure , Rhodococcus/enzymology , Serine Endopeptidases/metabolism , Stereoisomerism
4.
Chembiochem ; 21(21): 3077-3081, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32585070

ABSTRACT

We have examined the potential of the noncanonical amino acid (8-hydroxyquinolin-3-yl)alanine (HQAla) for the design of artificial metalloenzymes. HQAla, a versatile chelator of late transition metals, was introduced into the lactococcal multidrug-resistance regulator (LmrR) by stop codon suppression methodology. LmrR_HQAla was shown to complex efficiently with three different metal ions, CuII , ZnII and RhIII to form unique artificial metalloenzymes. The catalytic potential of the CuII -bound LmrR_HQAla enzyme was shown through its ability to catalyse asymmetric Friedel-Craft alkylation and water addition, whereas the ZnII -coupled enzyme was shown to mimic natural Zn hydrolase activity.


Subject(s)
Alanine/chemistry , Drug Design , Hydroxyquinolines/chemistry , Metalloproteins/chemical synthesis , Metals, Heavy/chemistry , Alanine/analogs & derivatives , Catalysis , Metalloproteins/chemistry , Models, Molecular , Molecular Structure
5.
Chemistry ; 26(54): 12338-12342, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32347609

ABSTRACT

Protein design is limited by the diversity of functional groups provided by the canonical protein "building blocks". Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split-GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3-phenylbutyrate.


Subject(s)
Amino Acids , Protein Engineering , Catalysis , Esterases/chemistry , Esterases/metabolism , Proteins
6.
Inorg Chem ; 56(21): 13293-13299, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29027794

ABSTRACT

The interaction of a number of first-row transition-metal ions with a 2,2'-bipyridyl alanine (bpyA) unit incorporated into the lactococcal multidrug resistance regulator (LmrR) scaffold is reported. The composition of the active site is shown to influence binding affinities. In the case of Fe(II), we demonstrate the need of additional ligating residues, in particular those containing carboxylate groups, in the vicinity of the binding site. Moreover, stabilization of di-tert-butylsemiquinone radical (DTB-SQ) in water was achieved by binding to the designed metalloproteins, which resulted in the radical being shielded from the aqueous environment. This allowed the first characterization of the radical semiquinone in water by resonance Raman spectroscopy.

7.
Chem ; 10(2): 615-627, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38344167

ABSTRACT

Proteins are essential biomolecules and central to biotechnological applications. In many cases, assembly into higher-order structures is a prerequisite for protein function. Under conditions relevant for applications, protein integrity is often challenged, resulting in disassembly, aggregation, and loss of function. The stabilization of quaternary structure has proven challenging, particularly for trimeric and higher-order complexes, given the complexity of involved inter- and intramolecular interaction networks. Here, we describe the chemical bicyclization of homotrimeric protein complexes, thereby increasing protein resistance toward thermal and chemical stress. This approach involves the structure-based selection of cross-linking sites, their variation to cysteine, and a subsequent reaction with a triselectrophilic agent to form a protein assembly with bicyclic topology. Besides overall increased stability, we observe resistance toward aggregation and greatly prolonged shelf life. This bicyclization strategy gives rise to unprecedented protein chain topologies and can enable new biotechnological and biomedical applications.

8.
Article in English | MEDLINE | ID: mdl-23722854

ABSTRACT

Haloalkane dehalogenases are hydrolytic enzymes with a broad range of potential practical applications such as biodegradation, biosensing, biocatalysis and cellular imaging. Two newly isolated psychrophilic haloalkane dehalogenases exhibiting interesting catalytic properties, DpcA from Psychrobacter cryohalolentis K5 and DmxA from Marinobacter sp. ELB17, were purified and used for crystallization experiments. After the optimization of crystallization conditions, crystals of diffraction quality were obtained. Diffraction data sets were collected for native enzymes and complexes with selected ligands such as 1-bromohexane and 1,2-dichloroethane to resolutions ranging from 1.05 to 2.49 Å.


Subject(s)
Bacterial Proteins/chemistry , Hydrolases/chemistry , Marinobacter/enzymology , Psychrobacter/enzymology , Bacterial Proteins/analysis , Catalytic Domain , Crystallography, X-Ray , Hydrolases/analysis , X-Ray Diffraction
9.
Protein Eng Des Sel ; 362023 01 21.
Article in English | MEDLINE | ID: mdl-36897290

ABSTRACT

Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes. Methods to achieve this end, such as the use of halogenated ncAAs, selective immobilization and rational design, will be discussed. Additionally, specific enzyme design considerations using ncAAs are discussed along with the benefits and limitations of the various approaches available to enhance the thermal stability of enzymes.


Subject(s)
Amino Acids , Amino Acids/chemistry , Biocatalysis
10.
Appl Environ Microbiol ; 78(14): 4995-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22582053

ABSTRACT

A haloalkane dehalogenase, DpcA, from Psychrobacter cryohalolentis K5, representing a novel psychrophilic member of the haloalkane dehalogenase family, was identified and biochemically characterized. DpcA exhibited a unique temperature profile with exceptionally high activities at low temperatures. The psychrophilic properties of DpcA make this enzyme promising for various environmental applications.


Subject(s)
Adaptation, Physiological , Cold Temperature , Hydrolases/metabolism , Psychrobacter/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Hydrolases/chemistry , Hydrolases/genetics , Kinetics , Psychrobacter/genetics , Psychrobacter/growth & development , Psychrobacter/physiology , Substrate Specificity
11.
ACS Catal ; 11(12): 6763-6770, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34168902

ABSTRACT

The construction and engineering of artificial enzymes consisting of abiological catalytic moieties incorporated into protein scaffolds is a promising strategy to realize non-natural mechanisms in biocatalysis. Here, we show that incorporation of the noncanonical amino acid para-aminophenylalanine (pAF) into the nonenzymatic protein scaffold LmrR creates a proficient and stereoselective artificial enzyme (LmrR_pAF) for the vinylogous Friedel-Crafts alkylation between α,ß-unsaturated aldehydes and indoles. pAF acts as a catalytic residue, activating enal substrates toward conjugate addition via the formation of intermediate iminium ion species, while the protein scaffold provides rate acceleration and stereoinduction. Improved LmrR_pAF variants were identified by low-throughput directed evolution advised by alanine-scanning to obtain a triple mutant that provided higher yields and enantioselectivities for a range of aliphatic enals and substituted indoles. Analysis of Michaelis-Menten kinetics of LmrR_pAF and evolved mutants reveals that different activities emerge via evolutionary pathways that diverge from one another and specialize catalytic reactivity. Translating this iminium-based catalytic mechanism into an enzymatic context will enable many more biocatalytic transformations inspired by organocatalysis.

12.
ChemCatChem ; 13(9): 2262-2277, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34262629

ABSTRACT

The development of sustainable processes for the valorization of byproducts and other waste streams remains an ongoing challenge in the field of catalysis. Racemic borneol, isoborneol and camphor are currently produced from α-pinene, a side product from the production of cellulose. The pure enantiomers of these monoterpenoids have numerous applications in cosmetics and act as reagents for asymmetric synthesis, making an enzymatic route for their separation into optically pure enantiomers a desirable goal. Known short-chain borneol-type dehydrogenases (BDHs) from plants and bacteria lack the required specificity, stability or activity for industrial utilization. Prompted by reports on the presence of pure (-)-borneol and (-)-camphor in essential oils from rosemary, we set out to investigate dehydrogenases from the genus Salvia and discovered a dehydrogenase with high specificity (E>120) and high specific activity (>0.02 U mg-1) for borneol and isoborneol. Compared to other specific dehydrogenases, the one reported here shows remarkably higher stability, which was exploited to obtain the first three-dimensional structure of an enantiospecific borneol-type short-chain dehydrogenase. This, together with docking studies, led to the identification of a hydrophobic pocket in the enzyme that plays a crucial role in the stereo discrimination of bornane-type monoterpenoids. The kinetic resolution of borneol and isoborneol can be easily integrated into the existing synthetic route from α-pinene to camphor thereby allowing the facile synthesis of optically pure monoterpenols from an abundant renewable source.

13.
Phytochemistry ; 172: 112227, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31927319

ABSTRACT

Enzymes for selective terpene functionalization are of particular importance for industrial applications. Pure enantiomers of borneol and isoborneol are fragrant constituents of several essential oils and find frequent application in cosmetics and therapy. Racemic borneol can be easily obtained from racemic camphor, which in turn is readily available from industrial side-streams. Enantioselective biocatalysts for the selective conversion of borneol and isoborneol stereoisomers would be therefore highly desirable for their catalytic separation under mild reaction conditions. Although several borneol dehydrogenases from plants and bacteria have been reported, none show sufficient stereoselectivity. Despite Croteau et al. describing sage leaves to specifically oxidize one borneol enantiomer in the late 70s, no specific enzymes have been characterized. We expected that one or several alcohol dehydrogenases encoded in the recently elucidated genome of Salvia officinalis L. would, therefore, be stereoselective. This study thus reports the recombinant expression in E. coli and characterization of two enantiospecific enzymes from the Salvia officinalis L. genome, SoBDH1 and SoBDH2, and their comparison to other known ADHs. Both enzymes produce preferentially (+)-camphor from racemic borneol, but (-)-camphor from racemic isoborneol.


Subject(s)
Oils, Volatile , Salvia officinalis , Camphanes , Cloning, Molecular , Escherichia coli
14.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 324-331, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31045561

ABSTRACT

Haloalkane dehalogenases (HLDs) convert halogenated aliphatic pollutants to less toxic compounds by a hydrolytic mechanism. Owing to their broad substrate specificity and high enantioselectivity, haloalkane dehalogenases can function as biosensors to detect toxic compounds in the environment or can be used for the production of optically pure compounds. Here, the structural analysis of the haloalkane dehalogenase DpcA isolated from the psychrophilic bacterium Psychrobacter cryohalolentis K5 is presented at the atomic resolution of 1.05 Å. This enzyme exhibits a low temperature optimum, making it attractive for environmental applications such as biosensing at the subsurface environment, where the temperature typically does not exceed 25°C. The structure revealed that DpcA possesses the shortest access tunnel and one of the most widely open main tunnels among structural homologs of the HLD-I subfamily. Comparative analysis revealed major differences in the region of the α4 helix of the cap domain, which is one of the key determinants of the anatomy of the tunnels. The crystal structure of DpcA will contribute to better understanding of the structure-function relationships of cold-adapted enzymes.


Subject(s)
Bacterial Proteins/chemistry , Hydrocarbons, Halogenated/chemistry , Hydrolases/chemistry , Psychrobacter/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Cold Temperature , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrocarbons, Halogenated/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Psychrobacter/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Structural Homology, Protein , Substrate Specificity , Thermodynamics
15.
Nat Chem ; 10(9): 946-952, 2018 09.
Article in English | MEDLINE | ID: mdl-29967395

ABSTRACT

Creating designer enzymes with the ability to catalyse abiological transformations is a formidable challenge. Efforts toward this goal typically consider only canonical amino acids in the initial design process. However, incorporating unnatural amino acids that feature uniquely reactive side chains could significantly expand the catalytic repertoire of designer enzymes. To explore the potential of such artificial building blocks for enzyme design, here we selected p-aminophenylalanine as a potentially novel catalytic residue. We demonstrate that the catalytic activity of the aniline side chain for hydrazone and oxime formation reactions is increased by embedding p-aminophenylalanine into the hydrophobic pore of the multidrug transcriptional regulator from Lactococcus lactis. Both the recruitment of reactants by the promiscuous binding pocket and a judiciously placed aniline that functions as a catalytic residue contribute to the success of the identified artificial enzyme. We anticipate that our design strategy will prove rewarding to significantly expand the catalytic repertoire of designer enzymes in the future.


Subject(s)
Aniline Compounds/chemistry , Enzymes/metabolism , Hydrazones/metabolism , Oximes/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Hydrazones/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Lactococcus lactis/metabolism , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutagenesis , Oximes/chemistry , Sulfatases/genetics , Sulfatases/metabolism
16.
Chem Sci ; 8(10): 7228-7235, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29081955

ABSTRACT

The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate-metal cofactor-host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2'-bipyridin-5yl)alanine is used to bind the catalytic Cu(ii) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein-ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.

17.
Chem Sci ; 6(1): 770-776, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-28936318

ABSTRACT

Artificial metalloenzymes have emerged as an attractive new approach to enantioselective catalysis. Herein, we introduce a novel strategy for preparation of artificial metalloenzymes utilizing amber stop codon suppression methodology for the in vivo incorporation of metal-binding unnatural amino acids. The resulting artificial metalloenzymes were applied in catalytic asymmetric Friedel-Crafts alkylation reactions and up to 83% ee for the product was achieved.

SELECTION OF CITATIONS
SEARCH DETAIL