Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Am J Physiol Endocrinol Metab ; 326(6): E807-E818, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656130

ABSTRACT

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle from rodents and humans of both sexes. We recently found that concurrent mutation of three key sites to prevent their phosphorylation (Ser588, Thr642, and Ser704) on Akt substrate of 160 kDa (AS160; also known as TBC1D4) reduced the magnitude of the enhancement of postexercise ISGU (PEX-ISGU) by muscle from male, but not female rats. However, we did not test the role of individual phosphorylation sites on PEX-ISGU. Accordingly, our current aim was to test whether AS160 Ser704 phosphorylation (pSer704) is required for elevated PEX-ISGU by muscle. AS160-knockout (AS160-KO) rats (female and male) were studied when either in sedentary or 3 h after acute exercise. Adeno-associated virus (AAV) vectors were used to enable muscle expression of wild-type AS160 (AAV-WT-AS160) or AS160 mutated Ser704 to alanine to prevent phosphorylation (AAV-1P-AS160). Paired epitrochlearis muscles from each rat were injected with AAV-WT-AS160 or AAV-1P-AS160. We discovered that regardless of sex 1) AS160 abundance in AS160-KO rats was similar in paired muscles expressing WT-AS160 versus 1P-AS160; 2) muscles from exercised versus sedentary rats had greater ISGU, and PEX-ISGU was slightly greater for muscles expressing 1P-AS160 versus contralateral muscles expressing WT-AS160; and 3) pAS160Thr642 was lower in muscles expressing 1P-AS160 versus paired muscles expressing WT-AS160. These results indicate that pAS160Ser704 was not essential for elevated PEX-ISGU by skeletal muscle from rats of either sex. Furthermore, elimination of the postexercise increase in pAS160Thr642 did not lessen the postexercise effect on ISGU.NEW & NOTEWORTHY The current study evaluated the role of Akt substrate of 160 kDa (AS160) phosphorylation on Ser704 in increased insulin-stimulated glucose uptake by skeletal muscle after exercise. Adeno-associated virus vectors were engineered to express either wild-type-AS160 or AS160 mutated so that it could not be phosphorylated on Ser704 in paired muscles from AS160-knockout rats. The results demonstrated that AS160 phosphorylation on Ser704 was not essential for exercise-induced elevation in insulin-stimulated glucose uptake by rats of either sex.


Subject(s)
GTPase-Activating Proteins , Glucose , Insulin , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Female , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Rats , Phosphorylation , Physical Conditioning, Animal/physiology , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Insulin/metabolism , Glucose/metabolism , Serine/metabolism , Rats, Sprague-Dawley
2.
FASEB J ; 37(7): e23021, 2023 07.
Article in English | MEDLINE | ID: mdl-37289137

ABSTRACT

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160 kDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.


Subject(s)
GTPase-Activating Proteins , Hyperinsulinism , Insulin , Physical Conditioning, Animal , Animals , Female , Male , Rats , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Physical Conditioning, Animal/physiology , Serine/metabolism , Threonine/metabolism
3.
Mol Ther ; 31(11): 3123-3126, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37822079

ABSTRACT

High-dose systemic gene therapy with adeno-associated virus (AAV) is in clinical trials to treat various inherited diseases. Despite remarkable success in spinal muscular atrophy and promising results in other diseases, fatality has been observed due to liver, kidney, heart, or lung failure. Innate and adaptive immune responses to the vector play a critical role in the toxicity. Host factors also contribute to patient death. This mini-review summarizes clinical findings and calls for concerted efforts from all stakeholders to better understand the mechanisms underlying lethality in AAV gene therapy and to develop effective strategies to prevent/treat high-dose systemic AAV-gene-therapy-induced immunotoxicity.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Humans , Dystrophin/genetics , Dependovirus/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Immunity, Humoral , Muscular Dystrophy, Duchenne/genetics , Genetic Vectors/adverse effects , Genetic Vectors/genetics
4.
Hum Mol Genet ; 30(14): 1321-1336, 2021 06 26.
Article in English | MEDLINE | ID: mdl-33949649

ABSTRACT

ΔR4-R23/ΔCT micro-dystrophin (µDys) is a miniaturized version of dystrophin currently evaluated in a Duchenne muscular dystrophy (DMD) gene therapy trial to treat skeletal and cardiac muscle disease. In pre-clinical studies, µDys efficiently rescues cardiac histopathology, but only partially normalizes cardiac function. To gain insights into factors that may impact the cardiac therapeutic efficacy of µDys, we compared by mass spectrometry the composition of purified dystrophin and µDys protein complexes in the mouse heart. We report that compared to dystrophin, µDys has altered associations with α1- and ß2-syntrophins, as well as cavins, a group of caveolae-associated signaling proteins. In particular, we found that membrane localization of cavin-1 and cavin-4 in cardiomyocytes requires dystrophin and is profoundly disrupted in the heart of mdx5cv mice, a model of DMD. Following cardiac stress/damage, membrane-associated cavin-4 recruits the signaling molecule ERK to caveolae, which activates key cardio-protective responses. Evaluation of ERK signaling revealed a profound inhibition, below physiological baseline, in the mdx5cv mouse heart. Expression of µDys in mdx5cv mice prevented the development of cardiac histopathology but did not rescue membrane localization of cavins nor did it normalize ERK signaling. Our study provides the first comparative analysis of purified protein complexes assembled in vivo by full-length dystrophin and a therapeutic micro-dystrophin construct. This has revealed disruptions in cavins and ERK signaling that may contribute to DMD cardiomyopathy. This new knowledge is important for ongoing efforts to prevent and treat heart disease in DMD patients.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Animals , Cardiomyopathies/genetics , Dystrophin/metabolism , Humans , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/metabolism , Myocytes, Cardiac/metabolism , Proteomics
5.
Am J Physiol Heart Circ Physiol ; 325(5): H1168-H1177, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37737731

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and is caused by mutations in the dystrophin gene. Dystrophin deficiency is associated with structural and functional changes of the muscle cell sarcolemma and/or stretch-induced ion channel activation. In this investigation, we use mice with transgenic cardiomyocyte-specific expression of the GCaMP6f Ca2+ indicator to test the hypothesis that dystrophin deficiency leads to cardiomyocyte Ca2+ handling abnormalities following preload challenge. α-MHC-MerCreMer-GCaMP6f transgenic mice were developed on both a wild-type (WT) or dystrophic (Dmdmdx-4Cv) background. Isolated hearts of 3-7-mo male mice were perfused in unloaded Langendorff mode (0 mmHg) and working heart mode (preload = 20 mmHg). Following a 30-min preload challenge, hearts were perfused in unloaded Langendorff mode with 40 µM blebbistatin, and GCaMP6f was imaged using confocal fluorescence microscopy. Incidence of premature ventricular complexes (PVCs) was monitored before and following preload elevation at 20 mmHg. Hearts of both wild-type and dystrophic mice exhibited similar left ventricular contractile function. Following preload challenge, dystrophic hearts exhibited a reduction in GCaMP6f-positive cardiomyocytes and an increase in number of cardiomyocytes exhibiting Ca2+ waves/overload. Incidence of cardiac arrhythmias was low in both wild-type and dystrophic hearts during unloaded Langendorff mode. However, after preload elevation to 20-mmHg hearts of dystrophic mice exhibited an increased incidence of PVCs compared with hearts of wild-type mice. In conclusion, these data indicate susceptibility to preload-induced Ca2+ overload, ventricular damage, and ventricular dysfunction in male Dmdmdx-4Cv hearts. Our data support the hypothesis that cardiomyocyte Ca2+ overload underlies cardiac dysfunction in muscular dystrophy.NEW & NOTEWORTHY The mechanisms of cardiac disease progression in muscular dystrophy are complex and poorly understood. Using a transgenic mouse model with cardiomyocyte-specific expression of the GCaMP6f Ca2+ indicator, the present study provides further support for the Ca2+-overload hypothesis of disease progression and ventricular arrhythmogenesis in muscular dystrophy.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Male , Animals , Mice , Dystrophin/genetics , Calcium/metabolism , Mice, Inbred mdx , Myocytes, Cardiac/metabolism , Muscular Dystrophy, Duchenne/genetics , Arrhythmias, Cardiac/metabolism , Mice, Transgenic , Disease Progression , Disease Models, Animal
6.
Gene Ther ; 29(6): 333-345, 2022 06.
Article in English | MEDLINE | ID: mdl-34611321

ABSTRACT

Inverted terminal repeats (ITRs) are the only wild-type components retained in the genome of adeno-associated virus (AAV) vectors. To determine whether ITR modification is a viable approach for AAV vector engineering, we rationally deleted all CpG motifs in the ITR and examined whether CpG elimination compromises AAV-vector production and transduction. Modified ITRs were stable in the plasmid and maintained the CpG-free nature in purified vectors. Replacing the wild-type ITR with the CpG-free ITR did not affect vector genome encapsidation. However, the vector yield was decreased by approximately 3-fold due to reduced vector genome replication. To study the biological potency, we made micro-dystrophin (µDys) AAV vectors carrying either the wild-type ITR or the CpG-free ITR. We delivered the CpG-free µDys vector to one side of the tibialis anterior muscle of dystrophin-null mdx mice and the wild-type µDys vector to the contralateral side. Evaluation at four months after injection showed no difference in the vector genome copy number, microdystrophin expression, and muscle histology and force. Our results suggest that the complete elimination of the CpG motif in the ITR does not affect the biological activity of the AAV vector. CpG-free ITRs could be useful in engineering therapeutic AAV vectors.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Dependovirus/genetics , Dystrophin/genetics , Genetic Therapy , Genetic Vectors/genetics , Mice , Mice, Inbred mdx
7.
J Pathol ; 254(5): 589-605, 2021 08.
Article in English | MEDLINE | ID: mdl-33999411

ABSTRACT

Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by dystrophin deficiency. Vascular dysfunction has been suggested as an underlying pathogenic mechanism in DMD. However, this has not been thoroughly studied in a large animal model. Here we investigated structural and functional changes in the vascular smooth muscle and endothelium of the canine DMD model. The expression of dystrophin and endothelial nitric oxide synthase (eNOS), neuronal NOS (nNOS), and the structure and function of the femoral artery from 15 normal and 16 affected adult dogs were evaluated. Full-length dystrophin was detected in the endothelium and smooth muscle in normal but not affected dog arteries. Normal arteries lacked nNOS but expressed eNOS in the endothelium. NOS activity and eNOS expression were reduced in the endothelium of dystrophic dogs. Dystrophin deficiency resulted in structural remodeling of the artery. In affected dogs, the maximum tension induced by vasoconstrictor phenylephrine and endothelin-1 was significantly reduced. In addition, acetylcholine-mediated vasorelaxation was significantly impaired, whereas exogenous nitric oxide-induced vasorelaxation was significantly enhanced. Our results suggest that dystrophin plays a crucial role in maintaining the structure and function of vascular endothelium and smooth muscle in large mammals. Vascular defects may contribute to DMD pathogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Dystrophin/deficiency , Endothelium, Vascular/physiopathology , Muscle, Smooth, Vascular/physiopathology , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Animals , Disease Models, Animal , Dogs
8.
Proc Natl Acad Sci U S A ; 116(18): 8693-8698, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30988204

ABSTRACT

While CRISPR/Cas9 is a powerful tool in genome engineering, the on-target activity and off-target effects of the system widely vary because of the differences in guide RNA (gRNA) sequences and genomic environments. Traditional approaches rely on separate models and parameters to treat on- and off-target cleavage activities. Here, we demonstrate that a free-energy scheme dominates the Cas9 editing efficacy and delineate a method that simultaneously considers on-target activities and off-target effects. While data-driven machine-learning approaches learn rules to model particular datasets, they may not be as transferrable to new systems or capable of producing new mechanistic insights as principled physical approaches. By integrating the energetics of R-loop formation under Cas9 binding, the effect of the protospacer adjacent motif sequence, and the folding stability of the whole single guide RNA, we devised a unified, physical model that can apply to any cleavage-activity dataset. This unified framework improves predictions for both on-target activities and off-target efficiencies of spCas9 and may be readily transferred to other systems with different guide RNAs or Cas9 ortholog proteins.


Subject(s)
CRISPR-Cas Systems/physiology , RNA, Guide, Kinetoplastida/chemistry , Animals , Protein Binding , RNA, Guide, Kinetoplastida/genetics , Thermodynamics
9.
Mol Ther ; 28(3): 845-854, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31981493

ABSTRACT

Loss of dystrophin leads to Duchenne muscular dystrophy (DMD). A pathogenic feature of DMD is the significant elevation of cytosolic calcium. Supraphysiological calcium triggers protein degradation, membrane damage, and eventually muscle death and dysfunction. Sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase (SERCA) is a calcium pump that transports cytosolic calcium to the SR during excitation-contraction coupling. We hypothesize that a single systemic delivery of SERCA2a with adeno-associated virus (AAV) may improve calcium recycling and provide long-lasting benefits in DMD. To test this, we injected an AAV9 human SERCA2a vector (6 × 1012 viral genome particles/mouse) intravenously to 3-month-old mdx mice, the most commonly used DMD model. Immunostaining and western blot showed robust human SERCA2a expression in the heart and skeletal muscle for 18 months. Concomitantly, SR calcium uptake was significantly improved in these tissues. SERCA2a therapy significantly enhanced grip force and treadmill performance, completely prevented myocardial fibrosis, and normalized electrocardiograms (ECGs). Cardiac catheterization showed normalization of multiple systolic and diastolic hemodynamic parameters in treated mice. Importantly, chamber dilation was completely prevented, and ejection fraction was restored to the wild-type level. Our results suggest that a single systemic AAV9 SERCA2a therapy has the potential to provide long-lasting benefits for DMD.


Subject(s)
Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/therapy , Gene Expression , Genetic Therapy , Muscular Dystrophy, Duchenne/complications , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Administration, Intravenous , Animals , Dependovirus/genetics , Disease Models, Animal , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Sarcoplasmic Reticulum/metabolism , Time Factors , Transduction, Genetic
10.
Hum Mol Genet ; 27(12): 2090-2100, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29618008

ABSTRACT

Delivery of miniaturized dystrophin genes via adeno-associated viral vectors is one leading approach in development to treat Duchenne muscular dystrophy. Here we directly compared the functionality of five mini- and micro-dystrophins via skeletal muscle-specific transgenic expression in dystrophin-deficient mdx mice. We evaluated their ability to rescue defects in the microtubule network, passive stiffness and contractility of skeletal muscle. Transgenic mdx mice expressing the short dystrophin isoform Dp116 served as a negative control. All mini- and micro-dystrophins restored elevated detyrosinated α-tubulin and microtubule density of mdx muscle to values not different from C57BL/10, however, only mini-dystrophins restored the transverse component of the microtubule lattice back to C57BL/10. Passive stiffness values in mdx muscles expressing mini- or micro-dystrophins were not different from C57BL/10. While all mini- and micro-dystrophins conferred significant protection from eccentric contraction-induced force loss in vivo and ex vivo compared to mdx, removal of repeats two and three resulted in less protection from force drop caused by eccentric contraction ex vivo. Our data reveal subtle yet significant differences in the relative functionalities for different therapeutic constructs of miniaturized dystrophin in terms of protection from ex vivo eccentric contraction-induced force loss and restoration of an organized microtubule lattice.


Subject(s)
Dystrophin/genetics , Microtubules/genetics , Muscular Dystrophy, Duchenne/genetics , Tubulin/genetics , Animals , Disease Models, Animal , Dystrophin/deficiency , Genetic Therapy , Humans , Mice , Mice, Inbred mdx/genetics , Mice, Transgenic , Microtubules/pathology , Muscle Contraction/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/therapy
11.
Mol Ther ; 27(9): 1568-1585, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31327755

ABSTRACT

CRISPR editing of muscle stem cells (MuSCs) with adeno-associated virus serotype-9 (AAV9) holds promise for sustained gene repair therapy for muscular dystrophies. However, conflicting evidence exists on whether AAV9 transduces MuSCs. To rigorously address this question, we used a muscle graft model. The grafted muscle underwent complete necrosis before regenerating from its MuSCs. We injected AAV9.Cre into Ai14 mice. These mice express tdTomato upon Cre-mediated removal of a floxed stop codon. About 28%-47% and 24%-89% of Pax7+ MuSCs expressed tdTomato in pre-grafts and regenerated grafts (p > 0.05), respectively, suggesting AAV9 efficiently transduced MuSCs, and AAV9-edited MuSCs renewed successfully. Robust MuSC transduction was further confirmed by delivering AAV9.Cre to Pax7-ZsGreen-Ai14 mice in which Pax7+ MuSCs are genetically labeled by ZsGreen. Next, we co-injected AAV9.Cas9 and AAV9.gRNA to dystrophic mdx mice to repair the mutated dystrophin gene. CRISPR-treated and untreated muscles were grafted to immune-deficient, dystrophin-null NSG.mdx4cv mice. Grafts regenerated from CRISPR-treated muscle contained the edited genome and yielded 2.7-fold more dystrophin+ cells (p = 0.015). Importantly, increased dystrophin expression was not due to enhanced formation of revertant fibers or de novo transduction by residual CRISPR vectors in the graft. We conclude that AAV9 effectively transduces MuSCs. AAV9 CRISPR editing of MuSCs may provide enduring therapy.


Subject(s)
Dependovirus/genetics , Dystrophin/genetics , Gene Editing , Genetic Vectors/genetics , Myoblasts/metabolism , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Models, Animal , Dystrophin/chemistry , Gene Expression , Gene Transfer Techniques , Genes, Reporter , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , RNA, Guide, Kinetoplastida/genetics , Regeneration , Satellite Cells, Skeletal Muscle/metabolism , Transduction, Genetic
12.
Am J Physiol Cell Physiol ; 317(4): C813-C824, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31365291

ABSTRACT

Reduction in the expression of sarcolipin (SLN), an inhibitor of sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA), ameliorates severe muscular dystrophy in mice. However, the mechanism by which SLN inhibition improves muscle structure remains unclear. Here, we describe the previously unknown function of SLN in muscle differentiation in Duchenne muscular dystrophy (DMD). Overexpression of SLN in C2C12 resulted in decreased SERCA pump activity, reduced SR Ca2+ load, and increased intracellular Ca2+ (Cai2+) concentration. In addition, SLN overexpression resulted in altered expression of myogenic markers and poor myogenic differentiation. In dystrophin-deficient dog myoblasts and myotubes, SLN expression was significantly high and associated with defective Cai2+ cycling. The dystrophic dog myotubes were less branched and associated with decreased autophagy and increased expression of mitochondrial fusion and fission proteins. Reduction in SLN expression restored these changes and enhanced dystrophic dog myoblast fusion during differentiation. In summary, our data suggest that SLN upregulation is an intrinsic secondary change in dystrophin-deficient myoblasts and could account for the Cai2+ mishandling, which subsequently contributes to poor myogenic differentiation. Accordingly, reducing SLN expression can improve the Cai2+ cycling and differentiation of dystrophic myoblasts. These findings provide cellular-level supports for targeting SLN expression as a therapeutic strategy for DMD.


Subject(s)
Calcium/metabolism , Muscle Development/physiology , Muscle Proteins/metabolism , Muscular Dystrophy, Duchenne/metabolism , Proteolipids/metabolism , Animals , Cell Differentiation/physiology , Dogs , Dystrophin/deficiency , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Myoblasts/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
13.
Mol Med ; 25(1): 31, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266455

ABSTRACT

BACKGROUND: Delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma leads to functional muscle ischemia. This contributes to the pathogenesis in cachexia, aging and muscular dystrophy. Mutations in the gene encoding dystrophin result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). In many BMD patients and DMD patients that have been converted to BMD by gene therapy, sarcolemmal nNOS is missing due to the lack of dystrophin nNOS-binding domain. METHODS: Dystrophin spectrin-like repeats 16 and 17 (R16/17) is the sarcolemmal nNOS localization domain. Here we explored whether R16/17 protein therapy can restore nNOS to the sarcolemma and prevent functional ischemia in transgenic mice which expressed an R16/17-deleted human micro-dystrophin gene in the dystrophic muscle. The palmitoylated R16/17.GFP fusion protein was conjugated to various cell-penetrating peptides and produced in the baculovirus-insect cell system. The best fusion protein was delivered to the transgenic mice and functional muscle ischemia was quantified. RESULTS: Among five candidate cell-penetrating peptides, the mutant HIV trans-acting activator of transcription (TAT) protein transduction domain (mTAT) was the best in transferring the R16/17.GFP protein to the muscle. Systemic delivery of the mTAT.R16/17.GFP protein to micro-dystrophin transgenic mice successfully restored sarcolemmal nNOS without inducing T cell infiltration. More importantly, R16/17 protein therapy effectively prevented treadmill challenge-induced force loss and improved muscle perfusion during contraction. CONCLUSIONS: Our results suggest that R16/17 protein delivery is a highly promising therapy for muscle diseases involving sarcolemmal nNOS delocalizaton.


Subject(s)
Muscle, Skeletal/metabolism , Nitric Oxide Synthase Type I/metabolism , Sarcolemma/metabolism , Utrophin/metabolism , Animals , Humans , Mice , Mice, Transgenic , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Mutation/genetics , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/pharmacology , Protein Binding/genetics , Sarcolemma/genetics , Sarcolemma/pathology , Utrophin/genetics
14.
Mol Ther ; 26(10): 2337-2356, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30093306

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.


Subject(s)
Dependovirus/genetics , Dystrophin/therapeutic use , Genetic Therapy , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , Genetic Vectors/therapeutic use , Humans , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology
15.
J Physiol ; 596(21): 5199-5216, 2018 11.
Article in English | MEDLINE | ID: mdl-30152022

ABSTRACT

KEY POINTS: We developed a novel method to study sympatholysis in dogs. We showed abolishment of sarcolemmal nNOS, and reduction of total nNOS and total eNOS in the canine Duchenne muscular dystrophy (DMD) model. We showed sympatholysis in dogs involving both nNOS-derived NO-dependent and NO-independent mechanisms. We showed that the loss of sarcolemmal nNOS compromised sympatholysis in the canine DMD model. We showed that NO-independent sympatholysis was not affected in the canine DMD model. ABSTRACT: The absence of dystrophin in Duchenne muscular dystrophy (DMD) leads to the delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma. Sarcolemmal nNOS plays an important role in sympatholysis, a process of attenuating reflex sympathetic vasoconstriction during exercise to ensure blood perfusion in working muscle. Delocalization of nNOS compromises sympatholysis resulting in functional ischaemia and muscle damage in DMD patients and mouse models. Little is known about the contribution of membrane-associated nNOS to blood flow regulation in dystrophin-deficient DMD dogs. We tested the hypothesis that the loss of sarcolemmal nNOS abolishes protective sympatholysis in contracting muscle of affected dogs. Haemodynamic responses to noradrenaline in the brachial artery were evaluated at rest and during contraction in the absence and presence of NOS inhibitors. We found sympatholysis was significantly compromised in DMD dogs, as well as in normal dogs treated with a selective nNOS inhibitor, suggesting that the absence of sarcolemmal nNOS underlies defective sympatholysis in the canine DMD model. Surprisingly, inhibition of all NOS isoforms did not completely abolish sympatholysis in normal dogs, suggesting sympatholysis in canine muscle also involves NO-independent mechanism(s). Our study established a foundation for using the dog model to test therapies aimed at restoring nNOS homeostasis in DMD.


Subject(s)
Muscular Dystrophy, Duchenne/physiopathology , Nitric Oxide/metabolism , Norepinephrine/pharmacology , Vasoconstriction , Vasoconstrictor Agents/pharmacology , Animals , Brachial Artery/drug effects , Brachial Artery/physiopathology , Dogs , Female , Male , Muscular Dystrophy, Duchenne/metabolism , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type I/metabolism
17.
Hum Mol Genet ; 25(13): 2633-2644, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27106099

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by dystrophin deficiency. A fundamental question in DMD pathogenesis and dystrophin gene therapy is whether muscle health depends on continuous dystrophin expression throughout the life. Published data suggest that transient dystrophin expression in early life might offer permanent protection. To study the consequences of adulthood dystrophin loss, we generated two strains of floxed mini-dystrophin transgenic mice on the dystrophin-null background. Muscle diseases were prevented in skeletal muscle of the YL238 strain and the heart of the SJ13 strain by selective expression of a therapeutic mini-dystrophin gene in skeletal muscle and heart, respectively. The mini-dystrophin gene was removed from the tibialis anterior (TA) muscle of 8-month-old YL238 mice and the heart of 7-month-old SJ13 mice using an adeno-associated virus serotype-9 Cre recombinase vector (AAV.CBA.Cre). At 12 and 15 months after AAV.CBA.Cre injection, mini-dystrophin expression was reduced by ∼87% in the TA muscle of YL238 mice and ∼64% in the heart of SJ13 mice. Mini-dystrophin reduction caused muscle atrophy, degeneration and force loss in the TA muscle of YL238 mice and significantly compromised left ventricular hemodynamics in SJ13 mice. Our results suggest that persistent dystrophin expression is essential for continuous muscle and heart protection.


Subject(s)
Dystrophin/metabolism , Dystrophin/physiology , Muscular Dystrophy, Duchenne/metabolism , Animals , Dystrophin/genetics , Gene Expression , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors , Genomics , Mice , Mice, Inbred CBA , Mice, Inbred mdx , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Duchenne/genetics , Myocardium/metabolism
18.
Hum Mol Genet ; 25(17): 3647-3653, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27378693

ABSTRACT

Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy.


Subject(s)
Dystrophin/chemistry , Dystrophin/metabolism , Glycoproteins/metabolism , Muscular Dystrophy, Animal/metabolism , Myocardium/metabolism , Animals , Binding Sites , Conserved Sequence , Cytosol/metabolism , Dogs , Dystrophin/genetics , Humans , Mice , Mice, Inbred mdx , Protein Domains , Sarcolemma/metabolism
19.
J Mol Cell Cardiol ; 102: 45-52, 2017 01.
Article in English | MEDLINE | ID: mdl-27908661

ABSTRACT

Dystrophin deficiency results in Duchenne cardiomyopathy, a primary cause of death in Duchenne muscular dystrophy (DMD). Gene therapy has shown great promise in ameliorating the cardiac phenotype in mouse models of DMD. However, it is not completely clear how much dystrophin is required to treat dystrophic heart disease. We and others have shown that mosaic dystrophin expression at the wild-type level, depending on the percentage of dystrophin positive cardiomyocytes, can either delay the onset of or fully prevent cardiomyopathy in dystrophin-null mdx mice. Many gene therapy strategies will unlikely restore dystrophin to the wild-type level in a cardiomyocyte. To determine whether low-level dystrophin expression can reduce the cardiac manifestations in DMD, we examined heart histology, ECG and hemodynamics in 21-m-old normal BL6 and two strains of BL6-background dystrophin-deficient mice. Mdx3cv mice show uniform low-level expression of a near full-length dystrophin protein in every myofiber while mdx4cv mice have no dystrophin expression. Immunostaining and western blot confirmed marginal level dystrophin expression in the heart of mdx3cv mice. Although low-level expression did not reduce myocardial histopathology, it significantly ameliorated QRS prolongation and normalized diastolic hemodynamic deficiencies. Our study demonstrates for the first time that low-level dystrophin can partially preserve heart function.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/physiopathology , Dystrophin/genetics , Gene Expression , Muscular Dystrophy, Duchenne/complications , Myocardium/metabolism , Age Factors , Animals , Biomarkers , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calsequestrin/genetics , Calsequestrin/metabolism , Cardiomyopathies/diagnosis , Diastole , Disease Models, Animal , Dystrophin/metabolism , Electrocardiography , Mice , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Myocardium/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Ventricular Function
20.
Hum Mol Genet ; 24(20): 5880-90, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26264580

ABSTRACT

The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (µDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in µDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.


Subject(s)
Dependovirus/genetics , Dystrophin/genetics , Genetic Therapy/methods , Muscle, Skeletal , Muscular Dystrophy, Duchenne/genetics , Transduction, Genetic/methods , Administration, Intravenous , Animals , Dogs , Dystrophin/therapeutic use , Female , Genetic Vectors , Male , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Duchenne/therapy
SELECTION OF CITATIONS
SEARCH DETAIL