Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
BMC Geriatr ; 23(1): 780, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017397

ABSTRACT

BACKGROUND: Phenotypic age acceleration, which reflects the difference between phenotypic age and chronological age, is an assessment to measure accelerated aging. Klotho is a protein related to slower aging, but its association with accelerated aging remains unclear. METHODS: Based on data from the 2007-2010 National Health and Nutrition Examination Survey, phenotypic age was calculated using chronological age and 9 aging-related biomarkers. A total of 4388 participants aged 40 to 79 years with measured serum Klotho and calculated phenotypic age were enrolled. The association between serum Klotho and phenotypic age acceleration was estimated using multivariable linear regression models. The possible nonlinear relationship was examined with smooth curve fitting. We also conducted a segmented regression model to examine the threshold effect. RESULTS: The association between serum Klotho and phenotypic age acceleration followed a U-shaped curve (p for nonlinearity < 0.001), with the inflection point at 870.7 pg/ml. The phenotypic age acceleration significantly decreased with the increment of serum Klotho (per SD increment: ß -1.77; 95% CI, -2.57 ~ -0.98) in participants with serum Klotho < 870.7 pg/ml, and increased with the increment of serum Klotho (per SD increment:ß, 1.03; 95% CI: 0.53 ~ 1.54) in participants with serum Klotho ≥ 870.7 pg/ml. CONCLUSION: There was a U-shaped association between serum Klotho and accelerated aging among the middle-aged and elderly US population.


Subject(s)
Aging , Glucuronidase , Aged , Humans , Middle Aged , Biomarkers , Cross-Sectional Studies , Nutrition Surveys
2.
Clin Immunol ; 245: 109141, 2022 12.
Article in English | MEDLINE | ID: mdl-36270469

ABSTRACT

Myasthenia gravis (MG) is a T-cell-dependent, antibody-mediated autoimmune disease. Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia and emerging evidence indicates its profound impacts on the immune homeostasis. Previous studies and our data showed DM might serve as an independent risk factor of MG, yet the underlying immune and molecular mechanisms remain to be addressed. Our study observed that circulating Tfh (cTfh) cells were increased in MG patients with DM and expressed a high level of ICOS. Besides, positive correlations between activated cTfh cells and plasmablasts were documented. Further studies demonstrated hyperglycemia promoted the differentiation and activation of Tfh cells which, in turn, caused abnormal plasmablasts differentiation and antibody secretion through the mTOR signaling pathway. These results indicated DM might aggravate the aberrant humoral immunity in MG patients by augmenting Tfh cells differentiation and function and tight glycemic control might be beneficial for MG patients with DM.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Myasthenia Gravis , Humans , Immunity, Humoral , T-Lymphocytes, Helper-Inducer , T Follicular Helper Cells , Diabetes Mellitus/metabolism
3.
J Neuroinflammation ; 18(1): 244, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702288

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear. METHODS: In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not. The phenotype and function of the spleen and lymph nodes were determined by flow cytometry. The serum antibodies, Tfh cells, and germinal center B cells were determined by ELISA and flow cytometry. The roles of advanced glycation end products (AGEs) in regulating Tfh cells were further explored in vitro by co-culture assays. RESULTS: Our results indicated clinical scores of EAMG rats were worse in diabetes rats compared to control, which was due to the increased production of anti-R97-116 antibody and antibody-secreting cells. Furthermore, diabetes induced a significant upregulation of Tfh cells and the subtypes of Tfh1 and Tfh17 cells to provide assistance for antibody production. The total percentages of B cells were increased with an activated statue of improved expression of costimulatory molecules CD80 and CD86. We found CD4+ T-cell differentiation was shifted from Treg cells towards Th1/Th17 in the DM+EAMG group compared to the EAMG group. In addition, in innate immunity, diabetic EAMG rats displayed more CXCR5 expression on NK cells. However, the expression of CXCR5 on NKT cells was down-regulated with the increased percentages of NKT cells in the DM+EAMG group. Ex vivo studies further indicated that Tfh cells were upregulated by AGEs instead of hyperglycemia. The upregulation was mediated by the existence of B cells, the mechanism of which might be attributed the elevated molecule CD40 on B cells. CONCLUSIONS: Diabetes promoted both adaptive and innate immunity and exacerbated clinical symptoms in EAMG rats. Considering the effect of diabetes, therapy in reducing blood glucose levels in MG patients might improve clinical efficacy through suppressing the both innate and adaptive immune responses. Additional studies are needed to confirm the effect of glucose or AGEs reduction to seek treatment for MG.


Subject(s)
Adaptive Immunity/physiology , Diabetes Mellitus, Experimental/immunology , Immunity, Innate/physiology , Inflammation Mediators/immunology , Myasthenia Gravis, Autoimmune, Experimental/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Coculture Techniques , Diabetes Mellitus, Experimental/metabolism , Female , Inflammation Mediators/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Myasthenia Gravis, Autoimmune, Experimental/metabolism , Rats , Rats, Inbred Lew , Th17 Cells/immunology , Th17 Cells/metabolism
4.
J Neuroinflammation ; 16(1): 282, 2019 Dec 29.
Article in English | MEDLINE | ID: mdl-31884963

ABSTRACT

BACKGROUND: Recent studies have demonstrated that natural killer (NK) cells can modulate other immune components and are involved in the development or progression of several autoimmune diseases. However, the roles and mechanisms of NK cells in regulating experimental autoimmune myasthenia gravis (EAMG) remained to be illustrated. METHODS: To address the function of NK cells in experimental autoimmune myasthenia gravis in vivo, EAMG rats were adoptively transferred with splenic NK cells. The serum antibodies, and splenic follicular helper T (Tfh) cells and germinal center B cells were determined by ELISA and flow cytometry. The roles of NK cells in regulating Tfh cells were further verified in vitro by co-culturing splenocytes or isolated T cells with NK cells. Moreover, the phenotype, localization, and function differences between different NK cell subtypes were determined by flow cytometry, immunofluorescence, and ex vivo co-culturation. RESULTS: In this study, we found that adoptive transfer of NK cells ameliorated EAMG symptoms by suppressing Tfh cells and germinal center B cells. Ex vivo studies indicated NK cells inhibited CD4+ T cells and Tfh cells by inducing the apoptosis of T cells. More importantly, NK cells could be divided into CXCR5- and CXCR5+ NK subtypes according to the expression of CXCR5 molecular. Compared with CXCR5- NK cells, which were mainly localized outside B cell zone, CXCR5+ NK were concentrated in the B cell zone and exhibited higher expression levels of IL-17 and ICOS, and lower expression level of CD27. Ex vivo studies indicated it was CXCR5- NK cells not CXCR5+ NK cells that suppressed CD4+ T cells and Tfh cells. Further analysis revealed that, compared with CXCR5- NK cells, CXCR5+ NK cells enhanced the ICOS expression of Tfh cells. CONCLUSIONS: These findings highlight the different roles of CXCR5- NK cells and CXCR5+ NK cells. It was CXCR5- NK cells but not CXCR5+ NK cells that suppressed Tfh cells and inhibited the autoimmune response in EAMG models.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Myasthenia Gravis, Autoimmune, Experimental/immunology , Receptors, CXCR5/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , Female , Mice , Rats , Rats, Inbred Lew
5.
J Neuroinflammation ; 16(1): 202, 2019 Nov 03.
Article in English | MEDLINE | ID: mdl-31679515

ABSTRACT

BACKGROUND: The thymus plays an essential role in the pathogenesis of myasthenia gravis (MG). In patients with MG, natural regulatory T cells (nTreg), a subpopulation of T cells that maintain tolerance to self-antigens, are severely impaired in the thymuses. In our previous study, upregulated nTreg cells were observed in the thymuses of rats in experimental autoimmune myasthenia gravis after treatment with exosomes derived from statin-modified dendritic cells (statin-Dex). METHODS: We evaluated the effects of exosomes on surface co-stimulation markers and Aire expression of different kinds of thymic stromal cells, including cTEC, mTEC, and tDCs, in EAMG rats. The isolated exosomes were examined by western blot and DLS. Immunofluorescence was used to track the exosomes in the thymus. Flow cytometry and western blot were used to analyze the expression of co-stimulatory molecules and Aire in vivo and in vitro. RESULTS: We confirmed the effects of statin-Dex in inducing Foxp3+ nTreg cells and found that both statin-Dex and DMSO-Dex could upregulate CD40 but only statin-Dex increased Aire expression in thymic stromal cells in vivo. Furthermore, we found that the role of statin-Dex and DMSO-Dex in the induction of Foxp3+ nTreg cells was dependent on epithelial cells in vitro. CONCLUSIONS: We demonstrated that statin-Dex increased expression of Aire in the thymus, which may further promote the Foxp3 expression in the thymus. These findings may provide a new strategy for the treatment of myasthenia gravis.


Subject(s)
Exosomes/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Myasthenia Gravis, Autoimmune, Experimental/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Animals , Atorvastatin/pharmacology , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Differentiation/immunology , Dendritic Cells/metabolism , Female , Rats , Rats, Inbred Lew , T-Lymphocytes, Regulatory/cytology , Thymus Gland , Transcription Factors/metabolism , AIRE Protein
6.
J Neuroinflammation ; 16(1): 119, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31171009

ABSTRACT

After the publication of the original article [1], it came to the authors' attention that there was an error in the originally published version of Fig. 5b. The image of CD4+CD25+ T cells of the statin-Dex group was unintentionally replaced with the image of CD4+CD25+ T cells from the control group. The correct version of Fig. 5b is published in this Erratum.

7.
J Neuroinflammation ; 15(1): 51, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29467007

ABSTRACT

BACKGROUND: With the recognition of the key roles of cellular metabolism in immunity, targeting metabolic pathway becomes a new strategy for autoimmune disease treatment. Guillain-Barré syndrome (GBS) is an acute immune-mediated inflammatory demyelinating disease of the peripheral nervous system, characterized by inflammatory cell infiltration. These inflammatory cells, including activated macrophages, Th1 cells, and Th17 cells, generally undergo metabolic reprogramming and rely mainly on glycolysis to exert functions. This study aimed to explore whether enhanced glycolysis contributed to the pathogenesis of experimental autoimmune neuritis (EAN), a classic model of GBS. METHODS: Preventive and therapeutic treatments with glycolysis inhibitor, 2-deoxy-D-glucose (2-DG), were applied to EAN rats. The effects of treatments were determined by clinical scoring, weighting, and tissue examination. Flow cytometry and ELISA were used to evaluate T cell differentiation, autoantibody level, and macrophage functions in vivo and in vitro. RESULTS: Glycolysis inhibition with 2-DG not only inhibited the initiation, but also prevented the progression of EAN, evidenced by the improved clinical scores, weight loss, inflammatory cell infiltration, and demyelination of sciatic nerves. 2-DG inhibited the differentiation of Th1, Th17, and Tfh cells but enhanced Treg cell development, accompanied with reduced autoantibody secretion. Further experiments in vitro proved glycolysis inhibition decreased the nitric oxide production and phagocytosis of macrophages and suppressed the maturation of dendritic cells (DC). CONCLUSION: The effects of glycolysis inhibition on both innate and adaptive immune responses and the alleviation of animal clinical symptoms indicated that enhanced glycolysis contributed to the pathogenesis of EAN. Glycolysis inhibition may be a new therapy for GBS.


Subject(s)
Glycolysis/physiology , Neuritis, Autoimmune, Experimental/chemically induced , Neuritis, Autoimmune, Experimental/metabolism , Animals , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Glycolysis/drug effects , Immunity, Cellular/drug effects , Immunity, Cellular/physiology , Lipopolysaccharides/toxicity , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Neuritis, Autoimmune, Experimental/drug therapy , RAW 264.7 Cells , Rats , Rats, Inbred Lew
8.
BMC Neurol ; 18(1): 121, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30131076

ABSTRACT

BACKGROUND: Segmental zoster paresis (SZP) of limbs, characterized by focal weakness of extremity, is recognized as a rare complication of herpes zoster (HZ). The following study analyzes the clinical characteristics and data from electromyography and MRI scans in patients with motor weakness after zoster infection. METHODS: One thousand three hundred ninety-three patients from our database (Shandong Provincial Qianfoshan Hospital) suffering from HZ were retrospectively reviewed from June 2015 to July 2017. Patients who fulfilled the diagnostic criteria for SZP were included in the analysis. The clinical characteristics, as well as electromyography findings and MRI scans were analyzed. RESULTS: SZP was present in 0.57% of patients with HZ (8/1393). The average age of symptom onset in 8 SZP patients was 69 years old (SD: 13, range 47-87). The severity of muscle weakness ranged from mild to severe. The electrophysiological testing revealed the characteristics of axonopathy. Radiculopathy (2/8), plexopathy (2/8), radiculoplexopathy (3/8) and combined radiculopathy and mononeuropathy (1/8) were also identified. MRI revealed hyperintensity of the affected spinal dorsal horns, nerve roots or peripheral nerves. CONCLUSIONS: SZP is associated with obvious limb weakness, nerve axons lesions and localization to nerve roots, plexus or peripheral nerves.


Subject(s)
Herpes Zoster , Muscle Weakness , Paresis , Aged , Aged, 80 and over , Electromyography , Herpes Zoster/complications , Herpes Zoster/diagnostic imaging , Herpes Zoster/physiopathology , Humans , Magnetic Resonance Imaging , Middle Aged , Muscle Weakness/complications , Muscle Weakness/diagnostic imaging , Muscle Weakness/physiopathology , Paresis/complications , Paresis/diagnostic imaging , Paresis/physiopathology , Radiculopathy/complications , Radiculopathy/diagnostic imaging , Radiculopathy/physiopathology , Retrospective Studies
9.
Mol Cell Neurosci ; 74: 106-13, 2016 07.
Article in English | MEDLINE | ID: mdl-27168379

ABSTRACT

The Rho/Rho kinase (ROCK) pathway serves as molecular switches in many biological processes including the immune response. ROCK inhibitors lead to amelioration of some autoimmune diseases. The present study was designed to define whether a selective ROCK inhibitor, fasudil, was effective in experimental autoimmune myasthenia gravis (EAMG) and investigate the underlying mechanisms. Here we found fasudil effectively attenuated the development of ongoing EAMG. Fasudil abolished the antibody production and function by decreasing follicular helper T cells and CD19(+) B cells, especially germinal center B cells. Moreover, fasudil reduced the expression of CD80 on lymph node mononuclear cells. These findings suggest the inhibition of ROCK might be a potential therapeutic strategy for antibody-mediated autoimmune diseases.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Myasthenia Gravis, Autoimmune, Experimental/therapy , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Animals , Autoimmunity/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Female , Germinal Center/cytology , Germinal Center/drug effects , Protein Kinase Inhibitors/therapeutic use , Rats , Rats, Inbred Lew , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology
11.
J Neuroinflammation ; 13: 8, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26757900

ABSTRACT

BACKGROUND: Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown. METHODS: Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry, and western blotting. In order to investigate whether statin-DCs-derived exosomes (Dex) could induce immune tolerance in EAMG, we administrated statin-Dex, control-Dex, or phosphate-buffered saline (PBS) into EAMG rats via tail vein injection. The tracking of injected Dex and the effect of statin-Dex injection on endogenous DCs were performed by immunofluorescence and flow cytometry, respectively. The number of Foxp3(+) cells in thymuses was examined using immunocytochemistry. Treg cells, cytokine secretion, lymphocyte proliferation, cell viability and apoptosis, and the levels of autoantibody were also carried out to evaluate the effect of statin-Dex on EAMG rats. To further investigate the involvement of FasL/Fas in statin-Dex-induced apoptosis, the underlying mechanisms were studied by FasL neutralization assays. RESULTS: Our data showed that the systemic injection of statin-Dex suppressed the clinical symptoms of EAMG rats. These statin-Dex had immune regulation functions in immune organs, such as the spleen, thymus, and popliteal and inguinal lymph nodes. Furthermore, statin-Dex exerted their immunomodulatory effects in vivo by decreasing the expression of CD80, CD86, and MHC class II on endogenous DCs. Importantly, the therapeutic effects of statin-Dex on EAMG rats were associated with up-regulated levels of indoleamine 2,3-dioxygenase (IDO)/Treg and partly dependent on FasL/Fas pathway, which finally resulted in decreased synthesis of anti-R97-116 IgG, IgG2a, and IgG2b antibodies. CONCLUSIONS: Our data suggest that atorvastatin-induced immature BMDCs are able to secrete tolerogenic Dex, which are involved in the suppression of immune responses in EAMG rats. Importantly, our study provides a novel cell-free approach for the treatment of autoimmune diseases.


Subject(s)
Exosomes/physiology , Fas Ligand Protein/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , T-Lymphocytes, Regulatory/metabolism , Up-Regulation/drug effects , fas Receptor/metabolism , Animals , Bone Marrow , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/ultrastructure , Disease Models, Animal , Female , Flow Cytometry , Forkhead Transcription Factors/metabolism , Microscopy, Electron , Rats , Rats, Inbred Lew , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects
12.
Mol Cell Neurosci ; 68: 284-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26311508

ABSTRACT

We previously demonstrated that atorvastatin induced immature dendritic cells (DCs) derived from spleen in vitro. Administration of these tolerogenic DCs led to amelioration of experimental autoimmune myasthenia gravis (EAMG). The protective effect was mainly mediated by inhibited cellular immune response, including up-regulated regulatory T cells and shifted Th1/Th17 to Th2 cytokines. The present study employed atorvastatin-modified bone marrow-derived DCs (AT-BMDCs) to explore the effect of tolerogenic DCs on humoral immune response of EAMG and further elucidate the underlying mechanisms. Our data showed that AT-BMDCs reduced the quantity and the relative affinity of pathogenic antibodies, suppressed germinal center response, decreased follicular helper T cells and IL-21, and increased regulatory B cells. These results suggest that AT-BMDCs ameliorate EAMG by regulating humoral immune response, thus providing new insights into therapeutic approaches of myasthenia gravis and other autoimmune diseases.


Subject(s)
Atorvastatin/therapeutic use , Dendritic Cells/drug effects , Dendritic Cells/immunology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Immunity, Humoral/drug effects , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , Animals , Atorvastatin/pharmacology , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Disease Models, Animal , Female , Flow Cytometry , Histocompatibility Antigens Class II/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Interleukins/metabolism , Myasthenia Gravis, Autoimmune, Experimental/physiopathology , Rats , Rats, Inbred Lew , Receptors, Cholinergic/immunology , Time Factors
13.
J Neuroinflammation ; 12: 118, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071315

ABSTRACT

BACKGROUND: IL-1ß has been shown to play a pivotal role in autoimmunity. Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor may be an important drug target for autoimmune diseases. However, the effects of caspase-1 inhibitor on myasthenia gravis (MG) remain undefined. METHODS: To investigate the effects of caspase-1 inhibitor on experimental autoimmune myasthenia gravis (EAMG), an animal model of MG, caspase-1 inhibitor was administered to Lewis rats immunized with region 97-116 of the rat AChR α subunit (R97-116 peptide) in complete Freund's adjuvant. The immunophenotypical characterization by flow cytometry and the levels of autoantibody by ELISA were carried out to evaluate the neuroprotective effect of caspase-1 inhibitor. RESULTS: We found that caspase-1 inhibitor improved EAMG clinical symptom, which was associated with decreased IL-17 production by CD4+ T cells and γδ T cells, lower affinity of anti-R97-116 peptide IgG. Caspase-1 inhibitor decreased expression of CD80, CD86, and MHC class II on DCs, as well as intracellular IL-1ß production from DCs. In addition, caspase-1 inhibitor treatment inhibited R97-116 peptide-specific cell proliferation and decreased follicular helper T cells relating to EAMG development. CONCLUSIONS: Our results suggest that caspase-1 inhibitor ameliorates experimental autoimmune myasthenia gravis by innate DC IL-1-IL-17 pathway and provides new evidence that caspase-1 is an important drug target in the treatment of MG and other autoimmune diseases.


Subject(s)
Caspase 1 , Caspase Inhibitors/therapeutic use , Dendritic Cells/drug effects , Enzyme Inhibitors/therapeutic use , Interleukin-17 , Interleukin-1 , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , Animals , Autoantibodies/immunology , Cytokines/biosynthesis , Female , Lymphocytes/pathology , Monocytes/pathology , Rats , Rats, Inbred Lew , Receptors, Cholinergic/immunology , Signal Transduction/drug effects , T-Lymphocytes, Helper-Inducer/immunology
14.
Cell Mol Neurobiol ; 34(6): 813-24, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24832394

ABSTRACT

Temporal lobe epilepsy is characterized by spontaneous recurrent seizures (SRS) and associated with behavioral problems. However, the molecular mechanisms underlying these problems are not yet clear. In this study, kainic acid (KA) was systemically administered to immature male Wistar rats to induce SRS. The behavior of the immature rats was evaluated with a water maze, elevated-plus mazes, and open field tests. The expression patterns of synaptophysin, SNAP-25, and synaptotagmin 1 (Syt 1) were examined by reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. KA-treated rats with SRS demonstrated learning and memory deficits, reduced anxiety, and increased locomotor activity, compared with placebo-treated rats and KA-treated rats without SRS. No neuronal cell loss was observed in the hippocampus 6 weeks after exposure to KA. However, RT-PCR and Western blot analyses revealed decreased synaptophysin, SNAP-25, and Syt 1 expression in KA-treated rats with SRS. Synaptophysin, SNAP-25, and Syt1 expression levels were found to be positively correlated with learning and memory but negatively correlated with anxiety and locomotor activity. These data suggested that SRS may induce changes in synaptophysin, SNAP-25, and Syt1 expression and may be functionally related to SRS-induced behavioral deficits.


Subject(s)
Behavior, Animal/drug effects , Hippocampus/drug effects , Memory Disorders/metabolism , Synaptophysin/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synaptotagmin I/metabolism , Animals , Kainic Acid/pharmacology , Learning/drug effects , Male , Memory/drug effects , Memory/physiology , Memory Disorders/chemically induced , Rats, Wistar
15.
Mol Cell Neurosci ; 56: 85-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23541702

ABSTRACT

Conventional therapies for autoimmune diseases produce nonspecific immune suppression, which are usually continued lifelong to maintain disease control, and associated with a variety of adverse effects. In this study, we found that spleen-derived dendritic cells (DCs) from the ongoing experimental autoimmune myasthenia gravis (EAMG) rats can be induced into tolerogenic DCs by atorvastatin in vitro. Administration of these tolerogenic DCs to EAMG rats on days 5 and 13 post immunization (p.i.) resulted in improved clinical symptoms, which were associated with increased numbers of CD4(+)CD25(+) T regulatory (Treg) cells and Foxp3 expression, decreased lymphocyte proliferation among lymph node mononuclear cells (MNC), shifted cytokine profile from Th1/Th17 to Th2 type cytokines, decreased level of anti-R97-116 peptide (region 97-116 of the rat acetylcholine receptor α subunit) IgG antibody in serum. These tolerogenic DCs can migrate to spleen, thymus, popliteal and inguinal lymph nodes after they were injected into the EAMG rats intraperitoneally. Furthermore, these tolerogenic DCs played their immunomodulatory effects in vivo mainly by decreased expression of CD86 and MHC class II on endogenous DCs. All these data provided us a new strategy to treat EAMG and even human myasthenia gravis (MG).


Subject(s)
Dendritic Cells/drug effects , Heptanoic Acids/pharmacology , Immunotherapy , Myasthenia Gravis, Autoimmune, Experimental/therapy , Pyrroles/pharmacology , T-Lymphocytes, Regulatory/immunology , Animals , Atorvastatin , Cell Proliferation , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/transplantation , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lymph Nodes/cytology , Lymph Nodes/immunology , Myasthenia Gravis, Autoimmune, Experimental/immunology , Rats , Rats, Inbred Lew , Spleen/cytology , Spleen/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Up-Regulation
16.
Heliyon ; 10(5): e26741, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449651

ABSTRACT

Background: Monocytes play an essential role in developing autoimmune diseases; however, their association with myasthenia gravis (MG) development is unclear. Methods: We performed a two-sample Mendelian randomization analysis to assess the causal relationship between monocyte-associated traits and MG, reviewing summary statistics of genome-wide association studies (GWAS). Results: Using the inverse variance weighted method, the following were found to be causally associated with MG: HLA-DR on monocytes (OR, 1.363; 95% CI, 1.158-1.605; P = 2E-04), HLA-DR on CD14+ monocytes (OR, 1.324; 95% CI, 1.183-1.482; P = 1.08E-06), HLA-DR on CD14+CD16- monocytes (OR, 1.313; 95% CI, 1.177-1.465; P = 1.07E-06), CD40 on monocytes (OR, 1.135; 95% CI, 1.012-1.272; P < 0.05), CD40 on CD14+CD16- monocytes (OR, 1.142; 95% CI, 1.015-1.285; P < 0.05), CD40 on CD14+CD16+ monocytes (OR, 1.142; 95% CI, 1.021-1.278; P < 0.05), CD64 on CD14+CD16+ monocytes (OR, 1.286; 95% CI, 1.019-1.623; P < 0.05). Conclusions: The present study suggests a causal relationship between the upregulation of CD40, HLA-DR, and CD64 on monocytes and the development of MG. Altered monocyte function may potentially be a risk factor for MG and a therapeutic target.

17.
Heliyon ; 10(9): e30015, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707411

ABSTRACT

Here, we presented 6 patients who were admitted to our institution and diagnosed as myasthenia gravis (MG) with tongue muscle atrophy. All these 6 patients developed symptoms of bulbar muscle weakness in acetylcholine receptor antibodies positive MG (AChR-MG) (3/6), muscle-specific receptor tyrosine kinase antibodies positive MG (MuSK-MG) (1/6), and sero-negative MG (2/6). Most of patients had "triple-furrowed" tongue except for patient 2 with irregular atrophy of tongue muscle. Tongue muscle atrophy occurs in patients with MuSK-MG, AChR-MG, and sero-negative MG. Atrophied tongue muscles of five patients with MG were reversible after immunotherapy.

18.
J Neuroimmunol ; 396: 578460, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39317078

ABSTRACT

BACKGROUND: Autoimmune nodopathy (AN) is a very rare new disease entity, especially when combined with membranous nephropathy (MN). METHODS: Antibodies against nodal-paranodal cell adhesion molecules in the serum were detected using cell-based assays. Antibody subtypes against contactin-1 (CNTN1) were confirmed. Cases of anti-CNTN1 antibody-positive AN with and without MN were retrieved through a literature search to compare clinical and electrophysiological characteristics. RESULTS: A 65-year-old male patient with MN developed limb numbness and weakness, along with walking instability. Serum CNTN1 antibodies were positive, primarily those of the IgG4 subtype. Electromyography showed prominent demyelination patterns in both the proximal and distal segments of the nerves compared to the middle nerve trunk. Magnetic resonance imaging revealed enlargement of the bilateral brachial and lumbosacral plexuses and local hyperintensity of the right C5-C6 nerve roots. Thirty-five cases with anti-CNTN1 antibody-positive AN with MN and 51 cases with anti-CNTN1 antibody-positive AN without MN were compared. Furthermore, the proportion of patients with MN combined with AN presenting with acute or subacute onset was higher than that observed in the MN without AN group. Nevertheless, no substantial differences were noted between the two groups concerning the clinical and electrophysiological characteristics, which were mainly elderly men, manifested as sensory ataxia, IgG4 antibody subtype, electrophysiological demyelination, and a certain effect on immunotherapy. CONCLUSION: In cases of electrophysiological manifestation of demyelinating peripheral neuropathy, especially in distal and poximal segments of nerves, AN should be considered, and further screening for renal function should be performed. Concomitant MN does not aggravate or alleviate peripheral nerve symptoms.

19.
Heliyon ; 10(1): e23745, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192761

ABSTRACT

Background: Myasthenia gravis (MG) is an autoimmune disease characterized by generalized skeletal muscle contraction weakness due to autoantibodies targeting neural-muscular junctions. Here, we investigated the relationship between key cytokines and MG type, disease course, antibodies, and comorbidities. Method: Cytokine levels in serum samples collected from MG (n = 45) and healthy control (HC, n = 38) patients from January 2020 to June 2022 were quantified via flow cytometry. Results: Levels of IL-6 were higher in the MG group versus healthy individuals (p = 0.026) and in patients with generalized versus ocular MG (p = 0.019). IL-6 levels were positively correlated with QMG score. In patients with MG with both AChR and Titin antibodies, serum levels of sFas and granulysin were higher than in those with AChR alone (p = 0.036, and p = 0.028, respectively). LOMG had a reduction in serum levels of IL-2 compared to EOMG (p = 0.036). LOMG patients with diabetes had lower serum levels of IL-2, IL-4, and IFN-γ (p = 0.044, p = 0.038, and p = 0.047, respectively) versus those without diabetes. sFas in the MG with Abnormal thymus were reduced compared to those in MG with Normal thymus (p = 0.008). Conclusions: This study revealed a positive correlation between IL-6 level and MG status. Serum cytokine levels of the AChR + Titin MG group differed from those of the AChR group. LOMG had a lower IL-2 level. Comorbidities affect some cytokines in peripheral blood in MG serum.

20.
Front Neurosci ; 17: 1161367, 2023.
Article in English | MEDLINE | ID: mdl-37304024

ABSTRACT

Background: Remnant cholesterol (RC) has been suggested to be implicated in atherosclerosis. The objective of the study was to evaluate the association between RC and first-ever stroke in the Chinese general population and to investigate whether the association is mediated via hypertension or diabetes. Methods: This study is a retrospective cohort analysis of participants from the China Health and Nutrition Survey. Participants without previous stroke and myocardial infarction in 2009 were enrolled and followed up in 2011 and 2015. Logistic regression analyses were adopted to explore the association of RC with stroke risk. Propensity score methods and doubly robust estimation method were used to ensure the robustness of our findings. Potential mediators were identified by mediation analyses. Results: A total of 7,035 participants were involved, and during 6 years of follow-up, 78 (1.1%) participants experienced a first-ever stroke. Participants with high RC had a significantly higher incidence of stroke (1.4% versus 0.8%; p = 0.007). High RC was associated with 74% higher stroke risk after adjusting for multiple relevant variables (odds ratio [OR], 1.74; 95% CI, 1.06-2.85). The association was consistent in analyses using propensity score methods and doubly robust estimation method. Hypertension showed a significant mediating effect on the association between RC and stroke, while the mediating effect of diabetes was not significant. Conclusion: High RC increased the risk of first-ever stroke in the Chinese general population without previous stroke and myocardial infarction, partially through the pathway of hypertension. RC might be a potential target for the primary prevention of stroke.

SELECTION OF CITATIONS
SEARCH DETAIL