Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Environ Sci Technol ; 46(20): 10926-33, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22954203

ABSTRACT

In polluted environments, when microbial aerosols originate locally, species composition of the aerosols should reflect the polluted source. To test the connection between local environmental pollution and microbial aerosols near an urban waterfront, we characterized bacterial aerosols at Newtown Creek (NTC), a public waterway and Superfund site in a densely populated area of New York, NY, USA. Culturable bacterial aerosol fallout rate and surface water bacterial concentrations were at least an order of magnitude greater at NTC than at a neighboring, less polluted waterfront and a nonurban coastal site in Maine. The NTC culturable bacterial aerosol community was significantly different in taxonomic structure from previous urban and coastal aerosol studies, particularly in relative abundances of Actinobacteria and Proteobacteria. Twenty-four percent of the operational taxonomic units in the NTC overall (air + water) bacterial isolate library were most similar to bacterial 16S rRNA gene sequences previously described in terrestrial or aquatic environments contaminated with sewage, hydrocarbons, heavy metals, and other industrial waste. This study is the first to examine the community composition and local deposition of bacterial aerosols from an aquatic Superfund site. The findings have important implications for the use of aeration remediation in polluted aquatic environments and suggest a novel pathway of microbial exposure in densely populated urban communities containing contaminated soil and water.


Subject(s)
Aerosols/analysis , Air Microbiology , Bacteria/growth & development , Environmental Monitoring/methods , Environmental Pollutants/analysis , Environmental Pollution/statistics & numerical data , Hazardous Waste , Air Pollutants/analysis , Bacteria/isolation & purification , Cities
2.
Sci Data ; 9(1): 578, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130969

ABSTRACT

Wastewater treatment plant (WWTP) discharges alter water quality and microbial communities by introducing human-associated bacteria in the environment and by altering microbial communities. To fully understand this impact, it is crucial to study whether WWTP discharges affect water and sediments microbial communities in comparable ways and whether such effects depend on specific environmental variables. Here, we present a dataset investigating the impact of a WWTP on water quality and bacterial communities by comparing samples collected directly from the WWTP outflow to surface waters and sediments at two sites above and two sites below it over a period of five months. When possible, we measured five physicochemical variables (e.g., temperature, turbidity, conductivity, dissolved oxygen, and salinity), four bioindicators (e.g., Escherichia coli, total coliforms, Enterococcus sp., and endotoxins), and two molecular indicators (e.g., intI1's relative abundance, and 16S rRNA gene profiling). Preliminary results suggest that bioindicators correlate with environmental variables and that bacterial communities present in the water tables, sediments, and treated water differ greatly in composition and structure.


Subject(s)
Bacteria , Wastewater , Water Quality , Endotoxins , Environmental Biomarkers , RNA, Ribosomal, 16S/genetics , Water Microbiology
3.
Environ Sci Technol ; 45(8): 3386-92, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21428380

ABSTRACT

Coarse aerosols (particle diameter (D(p)) > 2 µm) produced in coastal surf zones carry chemical and microbial content to shore, forming a connection between oceanic, atmospheric, and terrestrial systems that is potentially relevant to coastal ecology and human health. In this context, the effects of tidal height, wind speed, and fog on coastal coarse aerosols and microbial content were quantified on the southern coast of Maine, USA. Aerosols at this site displayed clear marine influence and had high concentrations of ecologically relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height (i.e., decreasing distance from waterline), onshore wind speed, and fog presence. As onshore wind speeds rose above 3 m s(-1), the mean half-deposition distance of coarse aerosols increased to an observed maximum of 47.6 ± 10.9 m from the water's edge at wind speeds from 5.5-8 m s(-1). Tidal height and fog presence did not significantly influence total microbial aerosol concentrations but did have a significant effect on culturable microbial aerosol fallout. At low wind speeds, culturable microbial aerosols falling out near-shore decreased by half at a distance of only 1.7 ± 0.4 m from the water's edge, indicating that these microbes may be associated with large coarse aerosols with rapid settling rates.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Aerosols/chemistry , Air Microbiology , Air Pollutants/chemistry , Atmosphere/chemistry , Bacteria/growth & development , Bacteria/isolation & purification , Colony Count, Microbial , Environmental Monitoring/methods , Particle Size , Seawater/chemistry , Seawater/microbiology , Tidal Waves , Water Movements , Wind
4.
Sci Total Environ ; 647: 1547-1556, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180359

ABSTRACT

Fog supplies water and nutrients to systems ranging from coastal forests to inland deserts. Fog droplets can also contain bacterial and fungal aerosols, but our understanding of fog biology is limited. Using metagenomic tools and culturing, we provide a unique look at fungal and bacterial communities in fog at two fog-dominated sites: coastal Maine (USA) and the Namib Desert (Namibia). Microbial communities in the fog at both sites were diverse, distinct from clear aerosols, and influenced by both soil and marine sources. Fog from both sites contained Actinobacteria and Firmicutes, commonly soil- and air-associated phyla, but also contained bacterial taxa associated with marine environments including Cyanobacteria, Oceanospirillales, Novosphingobium, Pseudoalteromonas, and Bradyrhizobiaceae. Marine influence on fog communities was greatest near the coast, but still evident in Namib fogs 50 km inland. In both systems, differences between pre- and post-fog aerosol communities suggest that fog events can significantly alter microbial aerosol diversity and composition. Fog is likely to enhance viability of transported microbes and facilitate their deposition, making fog biology ecologically important in fog-dominated environments. Fog may introduce novel species to terrestrial ecosystems, including human and plant pathogens, warranting further work on the drivers of this important and underrecognized aerobiological transfer between marine and terrestrial systems.


Subject(s)
Air Microbiology , Desert Climate , Fungi/growth & development , Weather , Environmental Monitoring , Maine , Namibia , Soil Microbiology
5.
Front Microbiol ; 9: 2868, 2018.
Article in English | MEDLINE | ID: mdl-30555433

ABSTRACT

The interaction of wind with aquatic and terrestrial surfaces is known to control the creation of microbial aerosols allowing for their entrainment into air masses that can be transported regionally and globally. Near surface interactions between urban waterways and urban air are understudied but some level of interaction among these bacterial communities would be expected and may be relevant to understanding both urban air and water quality. To address this gap related to patterns of local air-water microbial exchange, we utilized next-generation sequencing of 16S rRNA genes from paired air and water samples collected from 3 urban waterfront sites and evaluated their relative bacterial diversity. Aerosol samples at all sites were significantly more diverse than water samples. Only 17-22% of each site's bacterial aerosol OTUs were present at every site. These shared aerosol OTUs included taxa associated with terrestrial systems (e.g., Bacillus), aquatic systems (e.g., Planktomarina) and sewage (e.g., Enterococcus). In fact, sewage-associated genera were detected in both aerosol and water samples, (e.g., Bifidobacterium, Blautia, and Faecalibacterium), demonstrating the widespread influence of similar pollution sources across these urban environments. However, the majority (50-61%) of the aerosol OTUs at each site were unique to that site, suggesting that local sources are an important influence on bioaerosols. According to indicator species analysis, each site's aerosols harbored the highest percentage of bacterial OTUs statistically determined to uniquely represent that site's aquatic bacterial community, further demonstrating a local connection between water quality and air quality in the urban environment.

6.
PeerJ ; 4: e2827, 2016.
Article in English | MEDLINE | ID: mdl-28028485

ABSTRACT

The source, characteristics and transport of viable microbial aerosols in urban centers are topics of significant environmental and public health concern. Recent studies have identified adjacent waterways, and especially polluted waterways, as an important source of microbial aerosols to urban air. The size of these aerosols influences how far they travel, their resistance to environmental stress, and their inhalation potential. In this study, we utilize a cascade impactor and aerosol particle monitor to characterize the size distribution of particles and culturable bacterial and fungal aerosols along the waterfront of a New York City embayment. We seek to address the potential contribution of bacterial aerosols from local sources and to determine how their number, size distribution, and taxonomic identity are affected by wind speed and wind direction (onshore vs. offshore). Total culturable microbial counts were higher under offshore winds (average of 778 CFU/m3 ± 67), with bacteria comprising the majority of colonies (58.5%), as compared to onshore winds (580 CFU/m3 ± 110) where fungi were dominant (87.7%). The majority of cultured bacteria and fungi sampled during both offshore winds (88%) and onshore winds (72%) were associated with coarse aerosols (>2.1 µm), indicative of production from local sources. There was a significant correlation (p < 0.05) of wind speed with both total and coarse culturable microbial aerosol concentrations. Taxonomic analysis, based on DNA sequencing, showed that Actinobacteria was the dominant phylum among aerosol isolates. In particular, Streptomyces and Bacillus, both spore forming genera that are often soil-associated, were abundant under both offshore and onshore wind conditions. Comparisons of bacterial communities present in the bioaerosol sequence libraries revealed that particle size played an important role in microbial aerosol taxonomy. Onshore and offshore coarse libraries were found to be most similar. This study demonstrates that the majority of culturable bacterial aerosols along a New York City waterfront were associated with coarse aerosol particles, highlighting the importance of local sources, and that the taxonomy of culturable aerosol bacteria differed by size fraction and wind direction.

7.
PLoS One ; 10(1): e0117812, 2015.
Article in English | MEDLINE | ID: mdl-25635675

ABSTRACT

In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface injection in the Newark Basin and the potential microbiological impact of CO2 leakage on drinking water resources.


Subject(s)
Bacteria/metabolism , Carbon Dioxide/metabolism , Groundwater/chemistry , Groundwater/microbiology , Bacterial Adhesion , Geological Phenomena , Hydrogen/metabolism , Iron/metabolism , Methane/metabolism , New York , Oxidation-Reduction , Phylogeny , Sequence Analysis, DNA , Sulfates/metabolism
8.
Sci Total Environ ; 478: 184-9, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24531127

ABSTRACT

Aeration remediation is currently used in polluted urban waterways to increase oxygen levels in the water column. Recent studies have provided increasing evidence that the bursting of bubbles at water surfaces introduced by aeration, or other surface disturbances, can transfer viable bacteria to the air. In heavily sewage-polluted waterways these water-originated bacterial aerosols may pose as a health risk to recreators in small boats or residents inhabiting the shoreline. Nonetheless, few studies have explored aerosols above active aeration remediation projects in waterways or investigated how bacterial aerosols change with vertical distance from aeration activities. This study, conducted at the Newtown Creek superfund site in Brooklyn, NY, USA, measured coarse aerosol particles and culturable bacteria in near-surface air above waters undergoing aeration remediation. Regardless of aeration operation culturable bacterial fallout was greater near-surface (0.6m above water) than previously-reported measurements made at 2.5m. Molecular analysis of the 16S rRNA gene sequences from isolated bacteria demonstrates that water and air shared a large number of bacterial genera and that the genera present in the near-surface aerosols (0.6m) contained water-associated Vibrio and Caulobacter, which were not present at 2.5m, despite the smaller sequence library size from the near-surface. Also, the near-surface microbial assemblage had significantly greater association with sequences detected previously in aquatic environments compared to the 2.5m library. We found compelling evidence that aeration activity contributed to this vertical gradient in bacterial aerosol concentrations and identity. Similar to results from 2.5m, concentrations of near-surface respirable coarse aerosols (<10 um) increased significantly when aeration was occurring. Culturable bacterial aerosol fallout was also greater near-surface when the aerator was on compared to simultaneous measurements made at 2.5m. Furthermore, when the aerator was operating, the near-surface bacterial aerosol assemblage was statistically more similar to water assemblages than when the aerator was off. These findings highlight the potential for aeration remediation to increase exposure to viable bacterial aerosols in recreators (e.g. kayakers), a problem of greater concern where surface water is heavily polluted with sewage, as in Newtown Creek.


Subject(s)
Aerosols/analysis , Air Microbiology , Air Pollutants/analysis , Environmental Restoration and Remediation/methods , Water Pollution , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL