Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microb Cell Fact ; 16(1): 114, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28637476

ABSTRACT

BACKGROUND: Citramalate, a chemical precursor to the industrially important methacrylic acid (MAA), can be synthesized using Escherichia coli overexpressing citramalate synthase (cimA gene). Deletion of gltA encoding citrate synthase and leuC encoding 3-isopropylmalate dehydratase were critical to achieving high citramalate yields. Acetate is an undesirable by-product potentially formed from pyruvate and acetyl-CoA, the precursors of citramalate during aerobic growth of E. coli. This study investigated strategies to minimize acetate and maximize citramalate production in E. coli mutants expressing the cimA gene. RESULTS: Key knockouts that minimized acetate formation included acetate kinase (ackA), phosphotransacetylase (pta), and in particular pyruvate oxidase (poxB). Deletion of glucose 6-phosphate dehydrogenase (zwf) and ATP synthase (atpFH) aimed at improving glycolytic flux negatively impacted cell growth and citramalate accumulation in shake flasks. In a repetitive fed-batch process, E. coli gltA leuC ackA-pta poxB overexpressing cimA generated 54.1 g/L citramalate with a yield of 0.64 g/g glucose (78% of theoretical maximum yield), and only 1.4 g/L acetate in 87 h. CONCLUSIONS: This study identified the gene deletions critical to reducing acetate accumulation during aerobic growth and citramalate production in metabolically engineered E. coli strains. The citramalate yield and final titer relative to acetate at the end of the fed-batch process are the highest reported to date (a mass ratio of citramalate to acetate of nearly 40) without being detrimental to citramalate productivity, significantly improving a potential process for the production of this five-carbon chemical.


Subject(s)
Acetates/metabolism , Escherichia coli/metabolism , Malates/metabolism , Metabolic Engineering , Acetyl Coenzyme A/metabolism , Aerobiosis , Batch Cell Culture Techniques , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Deletion , Genes, Bacterial , Mutation , Pyruvic Acid/metabolism
2.
ACS Infect Dis ; 8(3): 596-611, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35199517

ABSTRACT

Over the last 20 years, both severe acute respiratory syndrome coronavirus-1 and severe acute respiratory syndrome coronavirus-2 have transmitted from animal hosts to humans causing zoonotic outbreaks of severe disease. Both viruses originate from a group of betacoronaviruses known as subgroup 2b. The emergence of two dangerous human pathogens from this group along with previous studies illustrating the potential of other subgroup 2b members to transmit to humans has underscored the need for antiviral development against them. Coronaviruses modify the host innate immune response in part through the reversal of ubiquitination and ISGylation with their papain-like protease (PLpro). To identify unique or overarching subgroup 2b structural features or enzymatic biases, the PLpro from a subgroup 2b bat coronavirus, BtSCoV-Rf1.2004, was biochemically and structurally evaluated. This evaluation revealed that PLpros from subgroup 2b coronaviruses have narrow substrate specificity for K48 polyubiquitin and ISG15 originating from certain species. The PLpro of BtSCoV-Rf1.2004 was used as a tool alongside PLpro of CoV-1 and CoV-2 to design 30 novel noncovalent drug-like pan subgroup 2b PLpro inhibitors that included determining the effects of using previously unexplored core linkers within these compounds. Two crystal structures of BtSCoV-Rf1.2004 PLpro bound to these inhibitors aided in compound design as well as shared structural features among subgroup 2b proteases. Screening of these three subgroup 2b PLpros against this novel set of inhibitors along with cytotoxicity studies provide new directions for pan-coronavirus subgroup 2b antiviral development of PLpro inhibitors.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Animals , Protease Inhibitors , SARS-CoV-2 , Ubiquitin/metabolism
3.
Nat Commun ; 13(1): 7298, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435827

ABSTRACT

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Mice , Humans , Animals , Hemorrhagic Fever Virus, Crimean-Congo/chemistry , Hemorrhagic Fever, Crimean/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Antibodies, Monoclonal
4.
Acta Crystallogr D Struct Biol ; 77(Pt 7): 943-953, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34196620

ABSTRACT

Porcine epidemic diarrhea is a devastating porcine disease that is caused by the alphacoronavirus porcine epidemic diarrhea virus (PEDV). Like other members of the Coronaviridae family, PEDV encodes a multifunctional papain-like protease 2 (PLP2) that has the ability to process the coronavirus viral polyprotein to aid in RNA replication and antagonize the host innate immune response through cleavage of the regulatory proteins ubiquitin (Ub) and/or interferon-stimulated gene product 15 (ISG15) (deubiquitination and deISGylation, respectively). Because Betacoronavirus PLPs have been well characterized, it was sought to determine how PLP2 from the alphacoronavirus PEDV differentiates itself from its related counterparts. PEDV PLP2 was first biochemically characterized, and a 3.1 Šresolution crystal structure of PEDV PLP2 bound to Ub was then solved, providing insight into how Alphacoronavirus PLPs bind to their preferred substrate, Ub. It was found that PEDV PLP2 is a deubiquitinase and readily processes a variety of di-Ub linkages, in comparison with its Betacoronavirus counterparts, which have a narrower range of di-Ub activity but process both Ub and ISG15.


Subject(s)
Coronavirus Infections/virology , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Porcine epidemic diarrhea virus/physiology , Ubiquitin/metabolism , Animals , Crystallography, X-Ray , Protein Binding , Protein Conformation , Swine
5.
ACS Infect Dis ; 6(8): 2099-2109, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32428392

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, is a novel human betacoronavirus that is rapidly spreading worldwide. The outbreak currently includes over 3.7 million cases and 260,000 fatalities. As a betacoronavirus, SARS-CoV-2 encodes for a papain-like protease (PLpro) that is likely responsible for cleavage of the coronavirus (CoV) viral polypeptide. The PLpro is also responsible for suppression of host innate immune responses by virtue of its ability to reverse host ubiquitination and ISGylation events. Here, the biochemical activity of SARS-CoV-2 PLpro against ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15) substrates is evaluated, revealing that the protease has a marked reduction in its ability to process K48 linked Ub substrates compared to its counterpart in SARS-CoV. Additionally, its substrate activity more closely mirrors that of the PLpro from the Middle East respiratory syndrome coronavirus and prefers ISG15s from certain species including humans. Additionally, naphthalene based PLpro inhibitors are shown to be effective at halting SARS-CoV-2 PLpro activity as well as SARS-CoV-2 replication.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/virology , Cysteine Endopeptidases/metabolism , Cytokines/metabolism , Deubiquitinating Enzymes/antagonists & inhibitors , Pneumonia, Viral/virology , Ubiquitin/metabolism , Ubiquitins/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , COVID-19 , Chlorocebus aethiops , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cytokines/antagonists & inhibitors , Cytokines/chemistry , Humans , Naphthalenes/pharmacology , Pandemics , Protein Binding , Protein Conformation , SARS-CoV-2 , Substrate Specificity , Ubiquitins/antagonists & inhibitors , Ubiquitins/chemistry , Vero Cells , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
6.
AMB Express ; 6(1): 49, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27457245

ABSTRACT

Recent studies suggest that nitric oxide donors capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of biofilms. Encased in extracellular polymeric substances, human and plant pathogens within biofilms are significantly more resistant to sanitizers. This is particularly a problem in refrigerated environments where food is processed. In an exercise aimed to study the potential of nitric oxide donors as biofilm dispersal in refrigerated conditions, we compared the ability of different nitric oxide donors (SNAP, NO-aspirin and Noc-5) to dislodge biofilms formed by foodborne, human and plant pathogens treated at 4 °C. The donors SNAP and Noc-5 were efficient in dispersing biofilms formed by Salmonella enterica, pathogenic Escherichia coli and Listeria innocua. The biomasses were decreased up to 30 % when compared with the untreated controls. When the plant pathogens Pectobacterium sp. and Xanthomonas sp. were tested the dispersion was mainly limited to Pectobacterium carotovorum biofilms, decreasing up to 15 % after exposure to molsidomine. Finally, the association of selected nitric oxide donors with sanitizers (DiQuat, H2O2, peracetic acid and PhenoTek II) was effective in dispersing biofilms. The best dispersal was achieved by pre-treating P. carotovorum with molsidomine and then peracetic acid. The synergistic effect was estimated up to ~35 % in dispersal when compared with peracetic acid alone. The association of nitric oxide donors with sanitizers could provide a foundation for an improved sanitization procedure for cleaning refrigerate environments.

7.
AMB Express ; 5: 28, 2015.
Article in English | MEDLINE | ID: mdl-26020015

ABSTRACT

Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate-CNC. Nitric oxide diffuses up to 500 µm from the hydrogel surface, with flux decreasing according to Fick's law. 60% of NO was released from the hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies.

8.
AMB Express ; 4: 42, 2014.
Article in English | MEDLINE | ID: mdl-24995149

ABSTRACT

Biofilms in the industrial environment could be problematic. Encased in extracellular polymeric substances, pathogens within biofilms are significantly more resistant to chlorine and other disinfectants. Recent studies suggest that compounds capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of sessile bacteria and provide a foundation for novel approaches to controlling biofilms formed by some microorganisms. In this work, we compared the ability of five nitric oxide donors (molsidomine, MAHMA NONOate, diethylamine NONOate, diethylamine NONOate diethylammonium salt, spermine NONOate) to dislodge biofilms formed by non-typhoidal Salmonella enterica and pathogenic E. coli on plastic and stainless steel surfaces at different temperatures. All five nitric oxide donors induced significant (35-80%) dispersal of biofilms, however, the degree of dispersal and the optimal dispersal conditions varied. MAHMA NONOate and molsidomine were strong dispersants of the Salmonella biofilms formed on polystyrene. Importantly, molsidomine induced dispersal of up to 50% of the pre-formed Salmonella biofilm at 4°C, suggesting that it could be effective even under refrigerated conditions. Biofilms formed by E. coli O157:H7 were also significantly dispersed. Nitric oxide donor molecules were highly active within 6 hours of application. To better understand mode of action of these compounds, we identified Salmonella genomic region recA-hydN, deletion of which led to an insensitivity to the nitric oxide donors.

SELECTION OF CITATIONS
SEARCH DETAIL