Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 16(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932267

ABSTRACT

Viral integration within the host genome plays a pivotal role in carcinogenesis. Various disruptive mechanisms are involved, leading to genomic instability, mutations, and DNA damage. With next-generation sequencing (NGS), we can now precisely identify viral and host genomic breakpoints and chimeric sequences, which are useful for integration site analysis. In this study, we evaluated a commercial hybrid capture NGS panel specifically designed for detecting three key viruses: HPV, HBV, and HIV-1. We also tested workflows for Viral Hybrid Capture (VHC) and Viral Integration Site (VIS) analysis, leveraging customized viral databases in CLC Microbial Genomics. By analyzing sequenced data from virally infected cancer cell lines (including SiHa, HeLa, CaSki, C-33A, DoTc2, 2A3, SCC154 for HPV; 3B2, SNU-182 for HBV; and ACH-2 for HIV-1), we precisely pinpointed viral integration sites. The workflow also highlighted disrupted and neighboring human genes that may play a crucial role in tumor development. Our results included informative virus-host read mappings, genomic breakpoints, and integration circular plots. These visual representations enhance our understanding of the integration process. In conclusion, our seamless end-to-end workflow bridges the gap in understanding viral contributions to cancer development, paving the way for improved diagnostics and treatment strategies.


Subject(s)
Carcinogenesis , Genomics , HIV-1 , Hepatitis B virus , High-Throughput Nucleotide Sequencing , Virus Integration , Workflow , Humans , Virus Integration/genetics , Hepatitis B virus/genetics , Hepatitis B virus/physiology , HIV-1/genetics , HIV-1/physiology , High-Throughput Nucleotide Sequencing/methods , Carcinogenesis/genetics , Genomics/methods , Cell Line, Tumor , Papillomaviridae/genetics
2.
Life Sci ; 357: 123103, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357793

ABSTRACT

AIMS: Ficolin 3 (FCN3) has the highest complement-activating capacity through the lectin pathway and is synthesized mainly in the liver and lung. Yet, its potential molecular mechanism in hepatocarcinogenesis is not fully understood. MATERIALS AND METHODS: The expression of FCN3 in hepatocellular carcinoma (HCC) tumor and non-tumor tissues was analyzed by RT-qPCR, Western blotting and immunofluorescence staining assays. Lentivector-mediated ectopic overexpression was performed to explore the role of FCN3 in vitro and in vivo. Whether FCN3 inhibited HCC cell growth and survival via complement pathway was determined with immunocytochemical staining for C3b, membrane attack complex (MAC) formation and complement killing assay using recombinant FCN3 (rFCN3) in combination with human serum with or without heat inactivation, and with C6 blocking antibody. KEY FINDINGS: The transcript and protein of FCN3 were found to be remarkably down-regulated in HCC tumor tissues. FCN3 expression was found to be associated with better survival of HCC patients. Restoration of FCN3 expression significantly inhibited proliferation, migration and anchorage independent growth of HCC cell lines, and xenograft tumor growth. FCN3 expression induced apoptosis of HCC cells. C3 and MAC formation was stimulated by FCN3 overexpression or rFCN3 treatment. rFCN3 enhanced human serum-induced complement activation and cell death. C6 blocking antibody significantly attenuated complement-mediated cell death and restored the growth of FCN3-overexpressing HCC cells. SIGNIFICANCE: FCN3 has a malignant suppressor role in HCC cells. Our study provides new insights into the molecular mechanisms that drive HCC progression and potential therapeutic targets for treating HCC.

3.
Sci Rep ; 14(1): 12753, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830975

ABSTRACT

Six Transmembrane Epithelial Antigen of Prostate 2 (STEAP2) belongs to a family of metalloreductases, which indirectly aid in uptake of iron and copper ions. Its role in hepatocellular carcinoma (HCC) remains to be characterized. Here, we report that STEAP2 expression was upregulated in HCC tumors compared with paired adjacent non-tumor tissues by RNA sequencing, RT-qPCR, Western blotting, and immunostaining. Public HCC datasets demonstrated upregulated STEAP2 expression in HCC and positive association with tumor grade. Transient and stable knockdown (KD) of STEAP2 in HCC cell lines abrogated their malignant phenotypes in vitro and in vivo, while STEAP2 overexpression showed opposite effects. STEAP2 KD in HCC cells led to significant alteration of genes associated with extracellular matrix organization, cell adhesion/chemotaxis, negative enrichment of an invasiveness signature gene set, and inhibition of cell migration/invasion. STEAP2 KD reduced intracellular copper levels and activation of stress-activated MAP kinases including p38 and JNK. Treatment with copper rescued the reduced HCC cell migration due to STEAP2 KD and activated p38 and JNK. Furthermore, treatment with p38 or JNK inhibitors significantly inhibited copper-mediated cell migration. Thus, STEAP2 plays a malignant-promoting role in HCC cells by driving migration/invasion via increased copper levels and MAP kinase activities. Our study uncovered a novel molecular mechanism contributing to HCC malignancy and a potential therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Cell Movement , Copper , Oxidoreductases , Animals , Female , Humans , Male , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Copper/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Mitogen-Activated Protein Kinases/metabolism
4.
Mol Cancer Res ; 20(1): 62-76, 2022 01.
Article in English | MEDLINE | ID: mdl-34610962

ABSTRACT

Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.


Subject(s)
Nerve Tissue Proteins/metabolism , Nuclear Proteins , Prostatic Neoplasms, Castration-Resistant/genetics , Repressor Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Zinc Finger Protein Gli3/metabolism , Animals , Cell Line, Tumor , Humans , Male , Mice , Mutation , Receptors, Androgen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL