Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 23(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37050635

ABSTRACT

Agricultural robotics is an up and coming field which deals with the development of robotic systems able to tackle a multitude of agricultural tasks efficiently. The case of interest, in this work, is mushroom collection in industrial mushroom farms. Developing such a robot, able to select and out-root a mushroom, requires delicate actions that can only be conducted if a well-performing perception module exists. Specifically, one should accurately detect the 3D pose of a mushroom in order to facilitate the smooth operation of the robotic system. In this work, we develop a vision module for 3D pose estimation of mushrooms from multi-view point clouds using multiple RealSense active-stereo cameras. The main challenge is the lack of annotation data, since 3D annotation is practically infeasible on a large scale. To address this, we developed a novel pipeline for mushroom instance segmentation and template matching, where a 3D model of a mushroom is the only data available. We evaluated, quantitatively, our approach over a synthetic dataset of mushroom scenes, and we, further, validated, qualitatively, the effectiveness of our method over a set of real data, collected by different vision settings.

2.
Sensors (Basel) ; 22(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36236643

ABSTRACT

Wearable technologies and digital phenotyping foster unique opportunities for designing novel intelligent electronic services that can address various well-being issues in patients with mental disorders (i.e., schizophrenia and bipolar disorder), thus having the potential to revolutionize psychiatry and its clinical practice. In this paper, we present e-Prevention, an innovative integrated system for medical support that facilitates effective monitoring and relapse prevention in patients with mental disorders. The technologies offered through e-Prevention include: (i) long-term continuous recording of biometric and behavioral indices through a smartwatch; (ii) video recordings of patients while being interviewed by a clinician, using a tablet; (iii) automatic and systematic storage of these data in a dedicated Cloud server and; (iv) the ability of relapse detection and prediction. This paper focuses on the description of the e-Prevention system and the methodologies developed for the identification of feature representations that correlate with and can predict psychopathology and relapses in patients with mental disorders. Specifically, we tackle the problem of relapse detection and prediction using Machine and Deep Learning techniques on all collected data. The results are promising, indicating that such predictions could be made and leading eventually to the prediction of psychopathology and the prevention of relapses.


Subject(s)
Psychotic Disorders , Schizophrenia , Wearable Electronic Devices , Humans , Psychotic Disorders/diagnosis , Psychotic Disorders/prevention & control , Recurrence , Secondary Prevention
3.
Front Psychiatry ; 14: 1024965, 2023.
Article in English | MEDLINE | ID: mdl-36993926

ABSTRACT

Introduction: Monitoring biometric data using smartwatches (digital phenotypes) provides a novel approach for quantifying behavior in patients with psychiatric disorders. We tested whether such digital phenotypes predict changes in psychopathology of patients with psychotic disorders. Methods: We continuously monitored digital phenotypes from 35 patients (20 with schizophrenia and 15 with bipolar spectrum disorders) using a commercial smartwatch for a period of up to 14 months. These included 5-min measures of total motor activity from an accelerometer (TMA), average Heart Rate (HRA) and heart rate variability (HRV) from a plethysmography-based sensor, walking activity (WA) measured as number of total steps per day and sleep/wake ratio (SWR). A self-reporting questionnaire (IPAQ) assessed weekly physical activity. After pooling phenotype data, their monthly mean and variance was correlated within each patient with psychopathology scores (PANSS) assessed monthly. Results: Our results indicate that increased HRA during wakefulness and sleep correlated with increases in positive psychopathology. Besides, decreased HRV and increase in its monthly variance correlated with increases in negative psychopathology. Self-reported physical activity did not correlate with changes in psychopathology. These effects were independent from demographic and clinical variables as well as changes in antipsychotic medication dose. Discussion: Our findings suggest that distinct digital phenotypes derived passively from a smartwatch can predict variations in positive and negative dimensions of psychopathology of patients with psychotic disorders, over time, providing ground evidence for their potential clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL