Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Prod Res ; : 1-8, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572009

ABSTRACT

The present study aimed to identify the content of astaxanthin and its esterified forms using high-performance liquid chromatography coupled with diode array and atmospheric pressure chemical ionisation mass spectrometry detection in three samples of shrimp waste. The analyses revealed twenty-one astaxanthin derivatives, including astaxanthin in free form, across all three extracts with the highest number of derivatives observed in the head extract. The shell extract had a lower content of astaxanthin and its esterified forms, with monoesterified astaxanthins being the major components, with contents ranging from 0.5-1 mg g-1. On the other hand, in both global waste and head extracts, astaxanthin diesters were found to be the dominant bioactive compounds, with contents ranging from 0.7-5.2 mg g-1 and 10.2-18.2 mg g-1, respectively. Notably, the astaxanthin content extracted from head was significantly higher compared to other extracts, indicating its potential as a valuable source of bioactive compounds.

2.
Front Microbiol ; 13: 987056, 2022.
Article in English | MEDLINE | ID: mdl-36160225

ABSTRACT

The aim of this study was to determine the effectiveness of a Super absorbent polymer (SAP) containing copper (SAP-Cu) in controlling mal secco disease (MSD) of lemon caused by the fungus Plenodomus tracheiphilus. Super absorbent polymer containing copper was characterized by atomic absorption spectrometry (AAS) and UV-VIS spectroscopy. In vitro tests were performed to determine the inhibitory effects of SAP-Cu against the pathogen on both potato-dextrose-agar medium and naturally infected lemon cuttings. Super absorbent polymer was able to absorb up to about 200 and 30 times its weight of ionized water and copper (II) sulfate solution (Cu2+ ions at the concentration 236 mM), respectively. The distribution of copper released on twigs after 24 h of contact with SAP-Cu was determined by secondary ion mass spectrometry with time-of-flight analyzer (ToF-SIMS). Super absorbent polymer containing copper significantly inhibited the viability of P. tracheiphilus in lemon twigs. Overall, the results of this study showed that the SAP could be a suitable carrier of antifungal compounds.

3.
Plants (Basel) ; 10(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34834815

ABSTRACT

(1) Background: This study was aimed at determining the in vitro inhibitory effect of new natural substances obtained by minimal processing from shrimp wastes on fungi and oomycetes in the genera Alternaria, Colletotrichum, Fusarium, Penicillium, Plenodomus and Phytophthora; the effectiveness of the substance with the highest in vitro activity in preventing citrus and apple fruit rot incited by P. digitatum and P. expansum, respectively, was also evaluated. (2) Methods: The four tested substances, water-extract, EtOAc-extract, MetOH-extract and nitric-extract, were analyzed by HPLC-ESI-MS-TOF; in vitro preliminary tests were carried out to determine the minimal inhibitory/fungicidal concentrations (MIC and MFC, respectively) of the raw dry powder, EtOAc-extract, MetOH-extract and nitric-extract for each pathogen. (3) Results: in the agar-diffusion-assay, nitric-extract showed an inhibitory effect on all pathogens, at all concentrations tested (100, 75, 50 and 25%); the maximum activity was on Plenodomus tracheiphilus, C. gloeosporioides and Ph. nicotianae; the diameters of inhibition halos were directly proportional to the extract concentration; values of MIC and MFC of this extract for all pathogens ranged from 2 to 3.5%; the highest concentrations (50 to 100%) tested in vivo were effective in preventing citrus and apple fruit molds. (4) Conclusions: This study contributes to the search for natural and ecofriendly substances for the control of pre- and post-harvest plant pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL