Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Immunity ; 52(6): 902-904, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553179

ABSTRACT

Endurance exercise drives physiological changes in the muscle to optimize performance. In a recent study in Science, Knudsen et al. report a role for the type 2 cytokine interleukin-13 in orchestrating metabolic reprogramming that drives adaptation to endurance exercise.


Subject(s)
Interleukin-13 , Physical Endurance , Adaptation, Physiological , Exercise , Muscle, Skeletal
2.
Nat Immunol ; 17(6): 656-65, 2016 06.
Article in English | MEDLINE | ID: mdl-27043409

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.


Subject(s)
Arginase/metabolism , Lymphocytes/physiology , Pneumonia/immunology , Animals , Arginase/genetics , Cell Proliferation/genetics , Cells, Cultured , Cytokines/metabolism , Glycolysis/genetics , Humans , Immunity, Innate , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Polyamines/metabolism , Th2 Cells/immunology
3.
Immunity ; 50(4): 851-870, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995503

ABSTRACT

The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.


Subject(s)
Cytokines/immunology , Interleukin-12/immunology , Multigene Family/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Cytokines/antagonists & inhibitors , Cytokines/genetics , Humans , Immunity, Cellular , Inflammation/immunology , Interleukin-12/antagonists & inhibitors , Interleukin-12/genetics , Interleukin-27/therapeutic use , Lymphocyte Subsets/immunology , Lymphopoiesis , Mice , Mice, Knockout , Multigene Family/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Protein Subunits , Structure-Activity Relationship
4.
J Immunol ; 208(5): 1007-1020, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35181641

ABSTRACT

E-protein transcription factors limit group 2 innate lymphoid cell (ILC2) development while promoting T cell differentiation from common lymphoid progenitors. Inhibitors of DNA binding (ID) proteins block E-protein DNA binding in common lymphoid progenitors to allow ILC2 development. However, whether E-proteins influence ILC2 function upon maturity and activation remains unclear. Mice that overexpress ID1 under control of the thymus-restricted proximal Lck promoter (ID1tg/WT) have a large pool of primarily thymus-derived ILC2s in the periphery that develop in the absence of E-protein activity. We used these mice to investigate how the absence of E-protein activity affects ILC2 function and the genomic landscape in response to house dust mite (HDM) allergens. ID1tg/WT mice had increased KLRG1- ILC2s in the lung compared with wild-type (WT; ID1WT/WT) mice in response to HDM, but ID1tg/WT ILC2s had an impaired capacity to produce type 2 cytokines. Analysis of WT ILC2 accessible chromatin suggested that AP-1 and C/EBP transcription factors but not E-proteins were associated with ILC2 inflammatory gene programs. Instead, E-protein binding sites were enriched at functional genes in ILC2s during development that were later dynamically regulated in allergic lung inflammation, including genes that control ILC2 response to cytokines and interactions with T cells. Finally, ILC2s from ID1tg/WT compared with WT mice had fewer regions of open chromatin near functional genes that were enriched for AP-1 factor binding sites following HDM treatment. These data show that E-proteins shape the chromatin landscape during ILC2 development to dictate the functional capacity of mature ILC2s during allergic inflammation in the lung.


Subject(s)
Antigens, Dermatophagoides/immunology , Asthma/immunology , Inhibitor of Differentiation Protein 1/metabolism , T-Lymphocytes/immunology , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Allergens/immunology , Animals , Asthma/pathology , Cell Differentiation/immunology , Chromatin/metabolism , Cytokines/immunology , DNA-Binding Proteins/antagonists & inhibitors , Female , Lectins, C-Type/genetics , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pyroglyphidae/immunology , Receptors, Immunologic/genetics , Stem Cells/cytology , T-Lymphocytes/cytology , Transcription Factor AP-1/metabolism
5.
Parasite Immunol ; 45(8): e12999, 2023 08.
Article in English | MEDLINE | ID: mdl-37415265

ABSTRACT

Intestinal helminth infection promotes a Type 2 inflammatory response in resistant C57BL/6 mice that is essential for worm clearance. The study of inbred mouse strains has revealed factors that are critical for parasite resistance and delineated the role of Type 1 versus Type 2 immune responses in worm clearance. In C57BL/6 mice, basophils are key innate immune cells that promote Type 2 inflammation and are programmed via the Notch signalling pathway during infection with the helminth Trichuris muris. However, how the host genetic background influences basophil responses and basophil expression of Notch receptors remains unclear. Here we use genetically susceptible inbred AKR/J mice that have a Type 1-skewed immune response during T. muris infection to investigate basophil responses in a susceptible host. Basophil population expansion occurred in AKR/J mice even in the absence of fulminant Type 2 inflammation during T. muris infection. However, basophils in AKR/J mice did not robustly upregulate expression of the Notch2 receptor in response to infection as occurred in C57BL/6 mice. Blockade of the Type 1 cytokine interferon-γ in infected AKR/J mice was not sufficient to elicit infection-induced basophil expression of the Notch2 receptor. These data suggest that the host genetic background, outside of the Type 1 skew, is important in regulating basophil responses during T. muris infection in susceptible AKR/J mice.


Subject(s)
Parasites , Trichuriasis , Animals , Mice , Mice, Inbred AKR , Trichuris , Basophils , Receptor, Notch2 , Mice, Inbred C57BL , Disease Susceptibility , Inflammation
6.
J Allergy Clin Immunol ; 150(6): 1302-1313, 2022 12.
Article in English | MEDLINE | ID: mdl-35863509

ABSTRACT

The release of cytokines from epithelial and stromal cells is critical for the initiation and maintenance of tissue immunity. Three such cytokines, thymic stromal lymphopoietin, IL-33, and IL-25, are important regulators of type 2 immune responses triggered by parasitic worms and allergens. In particular, these cytokines activate group 2 innate lymphoid cells, TH2 cells, and myeloid cells, which drive hallmarks of type 2 immunity. However, emerging data indicate that these tissue-associated cytokines are not only involved in canonical type 2 responses but are also important in the context of viral infections, cancer, and even homeostasis. Here, we provide a brief review of the roles of thymic stromal lymphopoietin, IL-33, and IL-25 in diverse immune contexts, while highlighting their relative contributions in tissue-specific responses. We also emphasize a biologically motivated framework for thinking about the integration of multiple immune signals, including the 3 featured in this review.


Subject(s)
Helminthiasis , Hypersensitivity , Interleukin-17 , Interleukin-33 , Thymic Stromal Lymphopoietin , Humans , Hypersensitivity/immunology , Immunity, Innate , Lymphocytes , Helminthiasis/immunology
7.
Eur J Immunol ; 51(10): 2399-2416, 2021 10.
Article in English | MEDLINE | ID: mdl-34396535

ABSTRACT

Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen- and helminth-induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host-pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin-driven component including allergic rhinitis and asthma.


Subject(s)
Biomarkers , Disease Susceptibility , Inflammation/etiology , Inflammation/metabolism , Prostaglandins/metabolism , Animals , Disease Management , Energy Metabolism , Gene Expression Regulation , Host-Parasite Interactions/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation/diagnosis , Inflammation/therapy , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Signal Transduction
8.
PLoS Pathog ; 16(10): e1009027, 2020 10.
Article in English | MEDLINE | ID: mdl-33108405

ABSTRACT

It is of great interest to understand how invading pathogens are sensed within the brain, a tissue with unique challenges to mounting an immune response. The eukaryotic parasite Toxoplasma gondii colonizes the brain of its hosts, and initiates robust immune cell recruitment, but little is known about pattern recognition of T. gondii within brain tissue. The host damage signal IL-33 is one protein that has been implicated in control of chronic T. gondii infection, but, like many other pattern recognition pathways, IL-33 can signal peripherally, and the specific impact of IL-33 signaling within the brain is unclear. Here, we show that IL-33 is expressed by oligodendrocytes and astrocytes during T. gondii infection, is released locally into the cerebrospinal fluid of T. gondii-infected animals, and is required for control of infection. IL-33 signaling promotes chemokine expression within brain tissue and is required for the recruitment and/or maintenance of blood-derived anti-parasitic immune cells, including proliferating, IFN-γ-expressing T cells and iNOS-expressing monocytes. Importantly, we find that the beneficial effects of IL-33 during chronic infection are not a result of signaling on infiltrating immune cells, but rather on radio-resistant responders, and specifically, astrocytes. Mice with IL-33 receptor-deficient astrocytes fail to mount an adequate adaptive immune response in the CNS to control parasite burden-demonstrating, genetically, that astrocytes can directly respond to IL-33 in vivo. Together, these results indicate a brain-specific mechanism by which IL-33 is released locally, and sensed locally, to engage the peripheral immune system in controlling a pathogen.


Subject(s)
Astrocytes/immunology , Interleukin-33/immunology , Toxoplasmosis, Cerebral/immunology , Adult , Animals , Astrocytes/metabolism , Astrocytes/physiology , Brain/metabolism , Female , Humans , Immunity , Interferon-gamma/immunology , Interleukin-33/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/immunology , Signal Transduction , Toxoplasma/metabolism , Toxoplasma/parasitology , Toxoplasmosis/metabolism , Toxoplasmosis, Cerebral/metabolism
9.
Nat Immunol ; 11(12): 1119-26, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21057510

ABSTRACT

The heterodimeric cytokine interleukin 27 (IL-27) signals through the IL-27Rα subunit of its receptor, combined with gp130, a common receptor chain used by several cytokines, including IL-6. Notably, the IL-27 subunits p28 (IL-27p28) and EBI3 are not always expressed together, which suggests that they may have unique functions. Here we show that IL-27p28, independently of EBI3, antagonized cytokine signaling through gp130 and IL-6-mediated production of IL-17 and IL-10. Similarly, the ability to generate antibody responses was dependent on the activity of gp130-signaling cytokines. Mice transgenic for expression of IL-27p28 showed a substantial defect in the formation of germinal centers and antibody production. Thus, IL-27p28, as a natural antagonist of gp130-mediated signaling, may be useful as a therapeutic for managing inflammation mediated by cytokines that signal through gp130.


Subject(s)
Cytokine Receptor gp130/metabolism , Interleukins/metabolism , Signal Transduction/immunology , Animals , Antibody Formation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Separation , Cytokine Receptor gp130/immunology , Cytokines/immunology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Immunohistochemistry , Interleukins/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens , Receptors, Cytokine/immunology , Receptors, Cytokine/metabolism
10.
Trends Immunol ; 40(6): 538-552, 2019 06.
Article in English | MEDLINE | ID: mdl-31103422

ABSTRACT

Infection with helminth parasites poses a significant challenge to the mammalian immune system. The type 2 immune response to helminth infection is critical in limiting worm-induced tissue damage and expelling parasites. Conversely, aberrant type 2 inflammation can cause debilitating allergic disease. Recent studies have revealed that key type 2 inflammation-associated immune and epithelial cell types respond to Notch signaling, broadly regulating gene expression programs in cell development and function. Here, we discuss new advances demonstrating that Notch is active in the development, recruitment, localization, and cytokine production of immune and epithelial effector cells during type 2 inflammation. Understanding how Notch signaling controls type 2 inflammatory processes could inform the development of Notch pathway modulators to treat helminth infections and allergies.


Subject(s)
Helminthiasis/immunology , Helminthiasis/metabolism , Helminthiasis/parasitology , Helminths/immunology , Host-Parasite Interactions/immunology , Receptors, Notch/metabolism , Signal Transduction , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Humans , Immunity, Innate/immunology , Leukocytes/immunology , Leukocytes/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Immunity ; 39(6): 1158-70, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24332033

ABSTRACT

Extramedullary hematopoiesis (EMH) refers to the differentiation of hematopoietic stem cells (HSCs) into effector cells that occurs in compartments outside of the bone marrow. Previous studies linked pattern-recognition receptor (PRR)-expressing HSCs, EMH, and immune responses to microbial stimuli. However, whether EMH operates in broader immune contexts remains unknown. Here, we demonstrate a previously unrecognized role for thymic stromal lymphopoietin (TSLP) in promoting the population expansion of progenitor cells in the periphery and identify that TSLP-elicited progenitors differentiated into effector cells including macrophages, dendritic cells, and granulocytes and that these cells contributed to type 2 cytokine responses. The frequency of circulating progenitor cells was also increased in allergic patients with a gain-of-function polymorphism in TSLP, suggesting the TSLP-EMH pathway might operate in human disease. These data identify that TSLP-induced EMH contributes to the development of allergic inflammation and indicate that EMH is a conserved mechanism of innate immunity.


Subject(s)
Cytokines/metabolism , Hematopoiesis, Extramedullary/immunology , Hypersensitivity/immunology , Inflammation , Spleen/immunology , Animals , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Flow Cytometry , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Polymorphism, Genetic , Precursor Cells, B-Lymphoid/cytology , Spleen/cytology , Trichinellosis/immunology , Thymic Stromal Lymphopoietin
12.
J Immunol ; 204(4): 1001-1011, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31900341

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are rare innate immune cells that accumulate in tissues during allergy and helminth infection, performing critical effector functions that drive type 2 inflammation. ILC2s express ST2, the receptor for the cytokine IL-33, and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a receptor for the bioactive lipid prostaglandin D2 (PGD2). The IL-33-ST2 and the PGD2-CRTH2 pathways have both been implicated in promoting ILC2 accumulation during type 2 inflammation. However, whether these two pathways coordinate to regulate ILC2 population size in the tissue in vivo remains undefined. In this study, we show that ILC2 accumulation in the murine lung in response to systemic IL-33 treatment was partially dependent on CRTH2. This effect was not a result of reduced ILC2 proliferation, increased apoptosis or cell death, or differences in expression of the ST2 receptor in the absence of CRTH2. Rather, data from adoptive transfer studies suggested that defective accumulation of CRTH2-deficient ILC2s in response to IL-33 was due to altered ILC2 migration patterns. Whereas donor wild-type ILC2s preferentially accumulated in the lungs compared with CRTH2-deficient ILC2s following transfer into IL-33-treated recipients, wild-type and CRTH2-deficient ILC2s accumulated equally in the recipient mediastinal lymph node. These data suggest that CRTH2-dependent effects lie downstream of IL-33, directly affecting the migration of ILC2s into inflamed lung tissues. A better understanding of the complex interactions between the IL-33 and PGD2-CRTH2 pathways that regulate ILC2 population size will be useful in understanding how these pathways could be targeted to treat diseases associated with type 2 inflammation.


Subject(s)
Cell Movement/immunology , Hypersensitivity/immunology , Interleukin-33/immunology , Lymphocytes/immunology , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Strongylida Infections/immunology , Adoptive Transfer , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Female , Humans , Hypersensitivity/pathology , Immunity, Innate , Interleukin-33/administration & dosage , Lung/cytology , Lung/immunology , Lung/pathology , Lymphocytes/metabolism , Mice , Mice, Knockout , Nippostrongylus/immunology , Primary Cell Culture , Prostaglandin D2/immunology , Prostaglandin D2/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Strongylida Infections/parasitology , Strongylida Infections/pathology
13.
Med J Aust ; 217(11): 592-597, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36478578

ABSTRACT

OBJECTIVES: To describe the prevalence of maladies and deaths among witches and wizards in the Harry Potter world, their causes, and associated therapies. DESIGN: Retrospective population-based observational study (report analysis) undertaken 10 February - 19 March 2022. SETTING: All locations described in the Harry Potter books, predominantly Hogwarts School of Witchcraft and Wizardry, but also selected locations, including Privet Drive No 4, Diagon Alley, the Ministry of Magic, and The Burrow. PARTICIPANTS: All witches and wizards mentioned at least once in any of the seven Harry Potter books. MAIN OUTCOME MEASURES: Overall numbers of maladies and deaths. Secondary outcomes were changes in morbidity and mortality over time, causes of morbidity and mortality, and treatments. RESULTS: A total of 603 wizards or witches named in the Potter books experienced 1541 maladies and injuries (1410 non-fatal) and 131 deaths. Overall morbidity incidence was 471 events per 1000 individuals, and mortality, after adjustment for Lord Voldemort's multi-mortality, was 20.6%. The most frequent causes of morbidity were traumatic injuries during duels or fights (553 cases, 39.2%), magical objects, potions, plants, or creatures (345, 24.5%), and non-combative trauma (221, 15.7%). Most deaths were related to wizarding duels (101 of 131, 77.1%). Treatments were rarely described; the most frequent were jinxes (274, 19.4%) and potions (136, 9.6%). Hospital stays were shorter than a week for almost all non-fatal maladies (1397 of 1410, 99.1%). CONCLUSIONS: Morbidity and, in particular, mortality were very high and predominantly caused by magical means. Further investigation into the safety at Hogwarts School of Witchcraft and Wizardry is warranted. The few treatments used had high success rates; rapid recovery was the rule, and hospital stays generally brief. Efforts should be undertaken to identify the magical therapies and interventions used and to introduce these novel remedies into Muggle medicine.


Subject(s)
Research , Schools , Humans , Retrospective Studies
14.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G668-G681, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34643097

ABSTRACT

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells, and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely cotranscribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.NEW & NOTEWORTHY In this study, first, microRNA atlas (and searchable web server) across all major small intestinal epithelial cell types is presented. We have demonstrated microRNAs that uniquely mark several lineages, including enteroendocrine and tuft. Identification of a key marker of mouse secretory progenitor cells, miR-672, which we show is deleted in humans. We have used several in vivo models to establish miR-152 as a specific marker of Paneth cells, which are highly understudied in terms of microRNAs.


Subject(s)
Cell Lineage , Epithelial Cells/metabolism , Gene Expression Profiling , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , MicroRNAs/genetics , Transcriptome , Animals , Biomarkers/metabolism , Cell Separation , Cells, Cultured , Computational Biology , Dogs , Female , Flow Cytometry , Intestinal Mucosa/cytology , Intestine, Small/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , Organoids , RNA-Seq , Single-Cell Analysis
15.
Immunity ; 37(3): 511-23, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22981537

ABSTRACT

Interferon-γ (IFN-γ) promotes a population of T-bet(+) CXCR3(+) regulatory T (Treg) cells that limit T helper 1 (Th1) cell-mediated pathology. Our studies demonstrate that interleukin-27 (IL-27) also promoted expression of T-bet and CXCR3 in Treg cells. During infection with Toxoplasma gondii, a similar population emerged that limited T cell responses and was dependent on IFN-γ in the periphery but on IL-27 at mucosal sites. Transfer of Treg cells ameliorated the infection-induced pathology observed in Il27(-/-) mice, and this was dependent on their ability to produce IL-10. Microarray analysis revealed that Treg cells exposed to either IFN-γ or IL-27 have distinct transcriptional profiles. Thus, IFN-γ and IL-27 have different roles in Treg cell biology and IL-27 is a key cytokine that promotes the development of Treg cells specialized to control Th1 cell-mediated immunity at local sites of inflammation.


Subject(s)
Interferon-gamma/pharmacology , Interleukin-17/pharmacology , Salmonella Infections, Animal/immunology , T-Lymphocytes, Regulatory/drug effects , Toxoplasmosis, Animal/immunology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Female , Flow Cytometry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Toxoplasma/immunology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/pathology
16.
Am J Respir Crit Care Med ; 201(1): 63-72, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31394048

ABSTRACT

Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation, but the immunologic mechanisms are poorly understood. Innate lymphoid cells (ILC) are a heterogeneous family of immune cells regulating pathologic inflammation and beneficial tissue repair. However, whether changes in donor-derived lung ILC populations are associated with PGD development has never been examined.Objectives: To determine whether PGD in chronic obstructive pulmonary disease or interstitial lung disease transplant recipients is associated with alterations in ILC subset composition within the allograft.Methods: We performed a single-center cohort study of lung transplantation patients with surgical biopsies of donor tissue taken before, and immediately after, allograft reperfusion. Donor immune cells from 18 patients were characterized phenotypically by flow cytometry for single-cell resolution of distinct ILC subsets. Changes in the percentage of ILC subsets with reperfusion or PGD (grade 3 within 72 h) were assessed.Measurements and Main Results: Allograft reperfusion resulted in significantly decreased frequencies of natural killer cells and a trend toward reduced ILC populations, regardless of diagnosis (interstitial lung disease or chronic obstructive pulmonary disease). Seven patients developed PGD (38.9%), and PGD development was associated with selective reduction of the ILC2 subset after reperfusion. Conversely, patients without PGD exhibited significantly higher ILC1 frequencies before reperfusion, accompanied by elevated ILC2 frequencies after allograft reperfusion.Conclusions: The composition of donor ILC subsets is altered after allograft reperfusion and is associated with PGD development, suggesting that ILCs may be involved in regulating lung injury in lung transplant recipients.


Subject(s)
Immunity, Innate , Lung Transplantation/adverse effects , Lymphocytes/immunology , Primary Graft Dysfunction/etiology , Primary Graft Dysfunction/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Risk Factors
17.
Cytokine ; 133: 154527, 2020 09.
Article in English | MEDLINE | ID: mdl-30241895

ABSTRACT

Parasitic helminth infection elicits a type 2 cytokine-mediated inflammatory response. During type 2 inflammation, damaged or stimulated epithelial cells exposed to helminths and their products produce alarmins and cytokines including IL-25, IL-33, and thymic stromal lymphopoietin. These factors promote innate immune cell activation that supports the polarization of CD4+ T helper type 2 (Th2) cells. Activated innate and Th2 cells produce the cytokines IL-4, -5, -9, and -13 that perpetuate immune activation and act back on the epithelium to cause goblet cell hyperplasia and increased epithelial cell turnover. Together, these events facilitate worm expulsion and wound healing processes. While the role of Th2 cells in this context has been heavily studied, recent work has revealed that epithelial cell-derived cytokines are drivers of key innate immune responses that are critical for type 2 anti-helminth responses. Cutting-edge studies have begun to fully assess how other factors and pathways, including lipid mediators, chemokines, Fc receptor signaling, danger-associated molecular pattern molecules, and direct cell-cell interactions, also participate in shaping innate cell-mediated type 2 inflammation. In this review, we discuss how these pathways intersect and synergize with pathways controlled by epithelial cell-derived cytokines to coordinate innate immune responses that drive helminth-induced type 2 inflammation.


Subject(s)
Cytokines/immunology , Helminthiasis/immunology , Helminths/immunology , Immunity, Innate/immunology , Animals , Helminthiasis/parasitology , Humans , Inflammation/immunology , Inflammation/parasitology , Th2 Cells/immunology
18.
Infect Immun ; 87(12)2019 12.
Article in English | MEDLINE | ID: mdl-31548322

ABSTRACT

Interleukin-27 (IL-27) is a heterodimeric cytokine composed of the subunits IL-27p28 and EBi3, and while the IL-27 heterodimer influences T cell activities, there is evidence that IL-27p28 can have EBi3-independent activities; however, their relevance to infection is unclear. Therefore, the studies presented here compared how IL-27p28 transgenics and IL-27p28-/- mice responded to the intracellular parasite Toxoplasma gondii While the loss of IL-27p28 and its overexpression both result in increased susceptibility to T. gondii, the basis for this phenotype reveals distinct roles for IL-27p28. As a component of IL-27, IL-27p28 is critical to limit infection-induced T cell-mediated pathology, whereas the ectopic expression of IL-27p28 reduced the effector T cell population and had a major inhibitory effect on parasite-specific antibody titers and a failure to control parasite replication in the central nervous system. Indeed, transfer of immune serum to infected IL-27p28 transgenics resulted in reduced parasite burden and pathology. Thus, IL-27p28, independent of its role as a component of IL-27, can act as a negative regulator of humoral and cellular responses during toxoplasmosis.


Subject(s)
B-Lymphocytes/immunology , Interleukins/genetics , T-Lymphocytes/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Central Nervous System/parasitology , Female , Interleukins/immunology , Male , Mice , Mice, Inbred C57BL , Toxoplasmosis/parasitology
19.
Immunity ; 30(2): 300-11, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19167248

ABSTRACT

To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8(+) T cells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. The proportion of these populations varied over time associated with changes in antigen availability as well as T cell expression of the inhibitory receptor PD1. Unexpectedly, the movement of infiltrating cells was closely associated with an infection-induced reticular system of fibers. This observation suggests that, whereas in other tissues pre-existing scaffolds exist that guide lymphocyte migration, in the brain specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Movement/immunology , Toxoplasma/immunology , Toxoplasmosis, Cerebral/immunology , Toxoplasmosis, Cerebral/parasitology , Animals , Central Nervous System/immunology , Mice , Rats , Toxoplasmosis, Cerebral/pathology
20.
Nature ; 486(7404): 545-8, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22722867

ABSTRACT

Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Movement , Chemokine CXCL10/immunology , Animals , Brain/immunology , Brain/microbiology , Chemokine CXCL10/antagonists & inhibitors , Chemokine CXCL10/genetics , Female , Ligands , Male , Mice , Mice, Inbred C57BL , Models, Immunological , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Time Factors , Toxoplasma/growth & development , Toxoplasma/immunology
SELECTION OF CITATIONS
SEARCH DETAIL