Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Physiol Genomics ; 22(1): 70-5, 2005 Jun 16.
Article in English | MEDLINE | ID: mdl-15827238

ABSTRACT

Pursuing fully a suggestion from linkage analysis that there might be a quantitative trait locus (QTL) for blood pressure (BP) in a chromosome (Chr) 2 region of the Dahl salt-sensitive rat (DSS), four congenic strains were made by replacing various fragments of DSS Chr 2 with those of Lewis (LEW). Consequently, a BP QTL was localized to a segment of around 3 cM or near 3 Mb on Chr 2 by comparative congenics. The BP-augmenting alleles of this QTL originated from the LEW rat, a normotensive strain compared with DSS. The dissection of a QTL with such a paradoxical effect illustrated the power of congenics in unearthing a gene hidden in the context of the whole animal system, presumably by interactions with other genes. The locus for the angiotensin II receptor AT-1B (Agtr1b) is not supported as a candidate gene for the QTL because a congenic strain harboring it did not have an effect on BP. There are approximately 19 known and unknown genes present in the QTL interval. Among them, no standout candidate genes are reputed to affect BP. Thus the QTL will likely represent a novel gene for BP regulation.


Subject(s)
Alleles , Chromosomes, Mammalian/genetics , Hypertension/genetics , Quantitative Trait Loci/genetics , Animals , Animals, Congenic , Blood Pressure/physiology , Chromosome Mapping , Humans , Mice , Rats , Rats, Inbred Dahl , Rats, Inbred Lew , Sequence Homology, Nucleic Acid
2.
Physiol Genomics ; 21(3): 362-9, 2005 May 11.
Article in English | MEDLINE | ID: mdl-15741507

ABSTRACT

Vascular hyperplasia may be involved in the remodeling of vasculature. It was unknown whether there were genetic determinants for aortic smooth muscle cell number (SMCN) and, if so, whether they acted independently of those for blood pressure (BP). To unravel this issue, we utilized congenic strains previously constructed for BP studies. These strains were made by replacing various chromosome 2 segments of the Dahl salt-sensitive (S) rat with those of the Milan normotensive rat (MNS). We measured and compared SMCN in aortic cross-sectional areas and BPs of these strains. Consequently, a quantitative trait locus (QTL) for SMCN was localized to a chromosome region not containing a BP QTL, but harboring the locus for the angiotensin II receptor AT1B (Agtr1b). Agtr1b became a candidate for the SMCN QTL because 1) two significant mutations were found in the coding region between S and all congenic strains possessing the MNS alleles, and 2) contractile responses to angiotensin II were significantly and selectively reduced in congenic rats harboring the MNS alleles of the SMCN QTL compared with S rats. The current investigation presents the first line of evidence that a QTL for aortic SMCN exists, and it acts independently of QTLs for BP. The relevant congenic strains developed therein potentially provide novel mammalian models for the studies of vascular remodeling disorders.


Subject(s)
Blood Pressure/physiology , Hypertension/genetics , Muscle, Smooth, Vascular/physiology , Quantitative Trait Loci , Receptor, Angiotensin, Type 1/genetics , Animals , Aorta , Base Sequence , Blood Pressure/genetics , Chromosome Mapping , DNA Primers , Genetic Markers , Muscle, Smooth, Vascular/physiopathology , Mutation , Rats , Reference Values
3.
Physiol Genomics ; 21(1): 112-6, 2005 Mar 21.
Article in English | MEDLINE | ID: mdl-15632271

ABSTRACT

Linkage studies suggested that a quantitative trait locus (QTL) for blood pressure (BP) was present in a region on chromosome 17 (Chr 17) of Dahl salt-sensitive (DSS) rats. A subsequent congenic strain targeting this QTL, however, could not confirm it. These conflicting results called into question the validity of localization of a QTL by linkage followed by the use of a congenic strain made with an incomplete chromosome coverage. To resolve this issue, we constructed five new congenic strains, designated C17S.L1 to C17S.L5, that completely spanned the +/-2 LOD confidence interval supposedly containing the QTL. Each congenic strain was made by replacing a segment of the DSS rat by that of the normotensive Lewis (LEW) rat. The only section to be LL homozygous is the region on Chr 17 specified in a congenic strain, as evidenced by a total genome scan. The results showed that BPs of C17S.L1 and C17S.L2 were lower (P < 0.04) than that of DSS rats. In contrast, BPs of C17S.L3, C17S.L4, and C17S.L5 were not different (P > 0.6) from that of DSS rats. Consequently, a BP QTL must be located in an interval of approximately 15 cM shared between C17S.L1 and C17S.L2 and unique to them both, as opposed to C17S.L3, C17S.L4, and C17S.L5. The present study illustrates the importance of thorough chromosome coverage, the necessity for a genome-wide screening, and the use of "negative" controls in physically mapping a QTL by congenic strains.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Animals , Animals, Congenic , Chromosome Mapping , Chromosomes/ultrastructure , Genetic Linkage , Genetic Markers , Genetic Predisposition to Disease , Genome , Homozygote , Lod Score , Models, Genetic , Models, Statistical , Quantitative Trait Loci , Quantitative Trait, Heritable , Rats , Rats, Inbred Dahl
4.
Hypertension ; 46(6): 1300-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16286573

ABSTRACT

Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.


Subject(s)
Epistasis, Genetic , Hypertension/genetics , Quantitative Trait Loci , Rats, Inbred Dahl/genetics , Animals , Animals, Congenic , Blood Pressure/genetics , Chromosome Mapping , Genetic Predisposition to Disease , Humans , Rats
5.
Hypertension ; 45(4): 557-64, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15738349

ABSTRACT

Our previous work demonstrated 2 quantitative trait loci (QTLs), C2QTL1 and C2QTL2, for blood pressure (BP) located on chromosome (Chr) 2 of Dahl salt-sensitive (DSS) rats. However, for a lack of markers, the 2 congenic strains delineating C2QTL1 and C2QTL2 could not be separated. The position of the C2QTL1 was only inferred by comparing 2 congenic strains, one having and another lacking a BP effect. Furthermore, it was not known how adjacent QTLs would interact with one another on Chr 2. In the current investigation, first, a critical chromosome marker was developed to separate 2 C2QTLs. Second, a congenic substrain was created to cover a chromosome fragment thought to harbor C2QTL1. Finally, a series of congenic strains was produced to systematically and comprehensively cover the entire Chr 2 segment containing C2QTL2 and other regions previously untested. Consequently, a total of 3 QTLs were discovered, with C2QTL3 located between C2QTL1 and C2QTL2. C2QTL1, C2QTL2, and C2QTL3 reside in chromosome segments of 5.7 centiMorgan (cM), 3.5 cM, and 1.5 cM, respectively. C2QTL1 interacted epistatically with either C2QTL2 or C2QTL3, whereas C2QTL2 and C2QTL3 showed additive effects to each other. These results suggest that BP QTLs closely linked in a segment interact epistatically and additively to one another on Chr 2.


Subject(s)
Blood Pressure/genetics , Chromosomes/genetics , Quantitative Trait Loci , Rats, Inbred Dahl/genetics , Animals , Animals, Congenic/genetics , Chromosome Mapping , Genetic Markers , Rats
6.
Hum Mol Genet ; 14(24): 3877-84, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16278234

ABSTRACT

Essential hypertension is a complex trait influenced by multiple genes known as quantitative trait loci (QTLs) for blood pressure (BP). It is not clear, however, what roles these QTLs play in maintaining normotension. Insights gained toward the maintenance of normotension will shed light on how hypertension can result from a deficiency or malfunctioning of this maintenance. Currently, congenic strains were systematically constructed using Dahl salt-sensitive (DSS) and Lewis (LEW) rats not only to define QTLs (i.e. in DSS background), but also to ascertain effects of the same QTLs in preserving normotension (i.e. in LEW background), a first such study. Results showed that although LEW alleles for two QTLs on Chromosome (Chr) 18 lowered BP on the DSS background, their BP-increasing DSS alleles failed to influence BP in the LEW background. To further prove that the LEW background is resistant and the DSS background is susceptible to the effects of QTLs, BP-increasing alleles of a QTL on Chr 2 were introgressed into the DSS background, and its BP-decreasing alleles into the LEW background. Indeed, there was no BP-decreasing effect on the LEW background while demonstrating a BP-increasing effect on the DSS background. Thus, a genetic regulation of BP QTLs in the LEW genome inhibits BP changes by nullifying the effects of BP-altering QTLs. In comparison, the DSS genome must have lost the buffering capacity for stabilizing BP. The current work presents good evidence that a lack of regulation for functions of BP QTLs is a potential underlying cause of hypertension.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Quantitative Trait Loci , Rats, Inbred Dahl/genetics , Animals , Animals, Congenic , Chromosomes , Female , Genome , Male , Rats , Rats, Inbred Lew , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL