Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Dairy Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098496

ABSTRACT

The efficacy of low gaseous ozone concentrations (300 ppb and 400 ppb) in controlling spoilage microflora and preserving the quality of the aged Toma Piemontese PDO cheese was explored. The research integrates consumer tests, Gas Chromatography-Mass Spectrometry (GC-MS) with Solid phase Microextraction (SPME) fiber and Electronic Nose (e-nose) analysis to conduct a detailed assessment of the cheese's aromatic composition. Results indicate that low ozone concentrations significantly affected spoilage microflora, preserving the overall quality. Through GC-FID (Flame Ionization Detection) analysis, 22 of all identified compounds by GC-MS were quantified, including ethyl acetate (sweety), diacetyl and acetoin (buttery). Compared with the untreated sample, ozone treatments maintained the distinctive characteristics of Toma Piemontese PDO cheese, reducing the formation of off-flavors-related compounds (i.e., ethanol). Moreover, ozone-treated samples correlated with positive aroma scores given by consumers. However, sensory perception involves complex interactions among aroma compounds, highlighting the importance of advanced approaches. The utilization of a 12-sensor Quartz Microbalance (QMB) e-nose played a crucial role in identifying subtle differences in aroma, contributing to a more nuanced understanding of ozone treatments on the cheese's sensory profile. In conclusion, this research demonstrates the potential of ozone technology as a viable and effective method for improving the quality of aged Toma Piemontese PDO cheese.

2.
Opt Express ; 18(17): 17897-912, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20721176

ABSTRACT

Recent advances in optical devices greatly enhance the feasibility of Optical Code Division Multiplexing/Wavelength Division Multiplexing (OCDM/WDM) Optical Packet Switch. In this paper, the performance of an OCDM/WDM switch is investigated when impairment due to both Multiple Access Interference and Beat noise are taken into account. Analytical models are proposed to dimension the switch resources as the number of optical codes carried on each wavelength and the number of needed optical converters. The Packet Loss Probability due to output packet contentions is evaluated as a function of the main switch and traffic parameters when Gold coherent optical codes are adopted. When the available bandwidth is fixed for the WDM/OCDM signal, due to a statistical multiplexing effect, we show that the use of more length codes and fewer wavelengths lead to lower packet loss probability, especially for low offered traffic.


Subject(s)
Algorithms , Computer Communication Networks/instrumentation , Fiber Optic Technology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Artifacts , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL