Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nature ; 623(7985): 183-192, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853125

ABSTRACT

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.


Subject(s)
Cell Compartmentation , Chromatin , DNA Damage , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase/metabolism , G1 Phase , Histones/metabolism , Neoplasms/genetics , R-Loop Structures , Tumor Suppressor p53-Binding Protein 1/metabolism
2.
Mol Cell ; 78(2): 236-249.e7, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32101700

ABSTRACT

The formation of silenced and condensed heterochromatin foci involves enrichment of heterochromatin protein 1 (HP1). HP1 can bridge chromatin segments and form liquid droplets, but the biophysical principles underlying heterochromatin compartmentalization in the cell nucleus are elusive. Here, we assess mechanistically relevant features of pericentric heterochromatin compaction in mouse fibroblasts. We find that (1) HP1 has only a weak capacity to form liquid droplets in living cells; (2) the size, global accessibility, and compaction of heterochromatin foci are independent of HP1; (3) heterochromatin foci lack a separated liquid HP1 pool; and (4) heterochromatin compaction can toggle between two "digital" states depending on the presence of a strong transcriptional activator. These findings indicate that heterochromatin foci resemble collapsed polymer globules that are percolated with the same nucleoplasmic liquid as the surrounding euchromatin, which has implications for our understanding of chromatin compartmentalization and its functional consequences.


Subject(s)
Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Euchromatin/genetics , Heterochromatin/genetics , Animals , Chromobox Protein Homolog 5 , Fibroblasts , Mice
4.
Biophys J ; 120(7): 1288-1300, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33640380

ABSTRACT

Living organisms typically store their genomic DNA in a condensed form. Mechanistically, DNA condensation can be driven by macromolecular crowding, multivalent cations, or positively charged proteins. At low DNA concentration, condensation triggers the conformational change of individual DNA molecules into a compacted state, with distinct morphologies. Above a critical DNA concentration, condensation goes along with phase separation into a DNA-dilute and a DNA-dense phase. The latter DNA-dense phase can have different material properties and has been reported to be rather liquid-like or solid-like depending on the characteristics of the DNA and the solvent composition. Here, we systematically assess the influence of DNA length on the properties of the resulting condensates. We show that short DNA molecules with sizes below 1 kb can form dynamic liquid-like assemblies when condensation is triggered by polyethylene glycol and magnesium ions, binding of linker histone H1, or nucleosome reconstitution in combination with linker histone H1. With increasing DNA length, molecules preferentially condense into less dynamic more solid-like assemblies, with phage λ-DNA with 48.5 kb forming mostly solid-like assemblies under the conditions assessed here. The transition from liquid-like to solid-like condensates appears to be gradual, with DNA molecules of roughly 1-10 kb forming condensates with intermediate properties. Titration experiments with linker histone H1 suggest that the fluidity of condensates depends on the net number of attractive interactions established by each DNA molecule. We conclude that DNA molecules that are much shorter than a typical human gene are able to undergo liquid-liquid phase separation, whereas longer DNA molecules phase separate by default into rather solid-like condensates. We speculate that the local distribution of condensing factors can modulate the effective length of chromosomal domains in the cell. We anticipate that the link between DNA length and fluidity established here will improve our understanding of biomolecular condensates involving DNA.


Subject(s)
DNA , Proteins , Cations , DNA/genetics , Humans , Macromolecular Substances
5.
Mol Cell ; 51(4): 454-68, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23911928

ABSTRACT

DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally deacetylates histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors such as 53BP1 and breast cancer 1 (BRCA1). Remarkably, SIRT6-deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a unique crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Damage/genetics , DNA Repair/genetics , Genomic Instability , Sirtuins/metabolism , Sirtuins/physiology , Adenosine Triphosphatases/genetics , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/genetics , Hippocampus/cytology , Hippocampus/metabolism , Histones/metabolism , Humans , Immunoprecipitation , Mice , Mice, Knockout , Nucleosomes/metabolism , Sirtuins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Mol Syst Biol ; 15(5): e8339, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118277

ABSTRACT

In chronic lymphocytic leukemia (CLL), a diverse set of genetic mutations is embedded in a deregulated epigenetic landscape that drives cancerogenesis. To elucidate the role of aberrant chromatin features, we mapped DNA methylation, seven histone modifications, nucleosome positions, chromatin accessibility, binding of EBF1 and CTCF, as well as the transcriptome of B cells from CLL patients and healthy donors. A globally increased histone deacetylase activity was detected and half of the genome comprised transcriptionally downregulated partially DNA methylated domains demarcated by CTCF CLL samples displayed a H3K4me3 redistribution and nucleosome gain at promoters as well as changes of enhancer activity and enhancer linkage to target genes. A DNA binding motif analysis identified transcription factors that gained or lost binding in CLL at sites with aberrant chromatin features. These findings were integrated into a gene regulatory enhancer containing network enriched for B-cell receptor signaling pathway components. Our study predicts novel molecular links to targets of CLL therapies and provides a valuable resource for further studies on the epigenetic contribution to the disease.


Subject(s)
Chromatin/chemistry , Gene Expression Regulation, Leukemic , Gene Regulatory Networks , Histones/chemistry , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Aged , Amino Acid Motifs , Binding Sites , CCCTC-Binding Factor/genetics , DNA/chemistry , DNA Methylation , Down-Regulation , Enhancer Elements, Genetic , Histone Deacetylases/genetics , Humans , Middle Aged , Promoter Regions, Genetic , Protein Binding , Trans-Activators/genetics
7.
J Cell Sci ; 130(24): 4213-4224, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29122982

ABSTRACT

Gene expression is tightly regulated in space and time. To dissect this process with high temporal resolution, we introduce an optogenetic tool termed blue light-induced chromatin recruitment (BLInCR) that combines rapid and reversible light-dependent recruitment of effector proteins with a real-time readout for transcription. We used BLInCR to control the activity of a cluster of reporter genes in the human osteosarcoma cell line U2OS by reversibly recruiting the viral transactivator VP16. RNA production was detectable ∼2 min after VP16 recruitment and readily decreased when VP16 dissociated from the cluster in the absence of light. Quantitative assessment of the activation process revealed biphasic activation kinetics with a pronounced early phase in cells treated with the histone deacetylase inhibitor SAHA. Comparison with kinetic models of transcription activation suggests that the gene cluster undergoes a maturation process when activated. We anticipate that BLInCR will facilitate the study of transcription dynamics in living cells.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Chromatin/genetics , Herpes Simplex Virus Protein Vmw65/genetics , Transcription, Genetic , Transcriptional Activation/genetics , Cell Line, Tumor , Chromatin/radiation effects , Gene Expression Regulation, Developmental/radiation effects , Genes, Reporter/genetics , Humans , Kinetics , Light
8.
Bioessays ; 39(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29034500

ABSTRACT

Nucleosomes "talk" to each other about their modification state to form extended domains of modified histones independently of the underlying DNA sequence. At the same time, DNA elements promote modification of nucleosomes in their vicinity. How do these site-specific and histone-based activities act together to regulate spreading of histone modifications along the genome? How do they enable epigenetic memory to preserve cell identity? Many models for the dynamics of repressive histone modifications emphasize the role of strong positive feedback loops, which reinforce histone modifications by recruiting histone modifiers to preexisting modifications. Recent experiments question that repressive histone modifications are self-sustained independently of their genomic context, thereby indicating that histone-based feedback is relatively weak. In the present review, current models for the dynamics of histone modifications are compared and it is suggested that limitation of histone-based feedback is key to intrinsic confinement of spreading and coexistence of short- and long-term memory at different genomic loci. See also the video abstract here: https://youtu.be/3bxr_xDEZfQ.


Subject(s)
Epigenesis, Genetic , Genome , Histones/metabolism , Models, Genetic , Nucleosomes/metabolism , Protein Processing, Post-Translational , Chromatin Assembly and Disassembly , DNA/genetics , DNA/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Feedback, Physiological , Histone Code , Histones/genetics , Nucleosomes/chemistry , Nucleosomes/ultrastructure
9.
Nucleic Acids Res ; 45(18): 10534-10554, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28977666

ABSTRACT

CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.


Subject(s)
Autoantigens/metabolism , DNA Helicases/metabolism , Gene Expression Regulation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Animals , Cell Line, Tumor , Chickens , DNA Repair , Humans , Nucleosomes/metabolism , Transcription, Genetic
10.
Proc Natl Acad Sci U S A ; 113(29): E4180-9, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27382173

ABSTRACT

Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species.


Subject(s)
Epigenomics , Histones/metabolism , Models, Biological , Methylation , Protein Domains , Schizosaccharomyces/metabolism
11.
Biophys J ; 114(10): 2262-2270, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29628210

ABSTRACT

Chromatin is partitioned on multiple length scales into subcompartments that differ from each other with respect to their molecular composition and biological function. It is a key question how these compartments can form even though diffusion constantly mixes the nuclear interior and rapidly balances concentration gradients of soluble nuclear components. Different biophysical concepts are currently used to explain the formation of "chromatin bodies" in a self-organizing manner and without consuming energy. They rationalize how soluble protein factors that are dissolved in the liquid nuclear phase, the nucleoplasm, bind and organize transcriptionally active or silenced chromatin domains. In addition to cooperative binding of proteins to a preformed chromatin structure, two different mechanisms for the formation of phase-separated chromatin subcompartments have been proposed. One is based on bridging proteins that cross-link polymer segments with particular properties. Bridging can induce a collapse of the nucleosome chain and associated factors into an ordered globular phase. The other mechanism is based on multivalent interactions among soluble molecules that bind to chromatin. These interactions can induce liquid-liquid phase separation, which drives the assembly of liquid-like nuclear bodies around the respective binding sites on chromatin. Both phase separation mechanisms can explain that chromatin bodies are dynamic spherical structures, which can coalesce and are in constant and rapid exchange with the surrounding nucleoplasm. However, they make distinct predictions about how the size, density, and stability of chromatin bodies depends on the concentration and interaction behavior of the molecules involved. Here, we compare the different biophysical mechanisms for the assembly of chromatin bodies and discuss experimental strategies to distinguish them from each other. Furthermore, we outline the implications for the establishment and memory of functional chromatin state patterns.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Models, Biological
12.
Biophys J ; 112(3): 473-490, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28131315

ABSTRACT

Epigenetic modifications and other chromatin features partition the genome on multiple length scales. They define chromatin domains with distinct biological functions that come in sizes ranging from single modified DNA bases to several megabases in the case of heterochromatic histone modifications. Due to chromatin folding, domains that are well separated along the linear nucleosome chain can form long-range interactions in three-dimensional space. It has now become a routine task to map epigenetic marks and chromatin structure by deep sequencing methods. However, assessing and comparing the properties of chromatin domains and their positional relationships across data sets without a priori assumptions remains challenging. Here, we introduce multiscale correlation evaluation (MCORE), which uses the fluctuation spectrum of mapped sequencing reads to quantify and compare chromatin patterns over a broad range of length scales in a model-independent manner. We applied MCORE to map the chromatin landscape in mouse embryonic stem cells and differentiated neural cells. We integrated sequencing data from chromatin immunoprecipitation, RNA expression, DNA methylation, and chromosome conformation capture experiments into network models that reflect the positional relationships among these features on different genomic scales. Furthermore, we used MCORE to compare our experimental data to models for heterochromatin reorganization during differentiation. The application of correlation functions to deep sequencing data complements current evaluation schemes and will support the development of quantitative descriptions of chromatin networks.


Subject(s)
Chromatin/genetics , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Animals , Cell Differentiation , DNA Methylation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Heterochromatin/genetics , Histones/chemistry , Histones/metabolism , Mice
13.
Mol Syst Biol ; 10: 746, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25134515

ABSTRACT

The cell establishes heritable patterns of active and silenced chromatin via interacting factors that set, remove, and read epigenetic marks. To understand how the underlying networks operate, we have dissected transcriptional silencing in pericentric heterochromatin (PCH) of mouse fibroblasts. We assembled a quantitative map for the abundance and interactions of 16 factors related to PCH in living cells and found that stably bound complexes of the histone methyltransferase SUV39H1/2 demarcate the PCH state. From the experimental data, we developed a predictive mathematical model that explains how chromatin-bound SUV39H1/2 complexes act as nucleation sites and propagate a spatially confined PCH domain with elevated histone H3 lysine 9 trimethylation levels via chromatin dynamics. This "nucleation and looping" mechanism is particularly robust toward transient perturbations and stably maintains the PCH state. These features make it an attractive model for establishing functional epigenetic domains throughout the genome based on the localized immobilization of chromatin-modifying enzymes.


Subject(s)
Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/metabolism , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Methylation , Epigenesis, Genetic , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Silencing , Genetic Markers , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Histones/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mitosis , NIH 3T3 Cells , Protein Interaction Domains and Motifs , Repetitive Sequences, Nucleic Acid , Sensitivity and Specificity
14.
Proc Natl Acad Sci U S A ; 109(47): E3221-30, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23129662

ABSTRACT

Interactions between nuclear proteins and chromatin frequently occur on the time scale of seconds and below. These transient binding events are important for the fast identification of target sites as concluded from our previous analysis of the human chromatin remodelers Snf2H and Snf2L from the imitation switch (ISWI) family. Both ATP-driven molecular motor proteins are able to translocate nucleosomes along the DNA and appear to exert this activity only on a small number of nucleosomes to which they bind more tightly. For mechanistic studies, one needs to distinguish such translocation reactions or other long-lived interactions associated with conformational changes and/or ATP hydrolysis from nonproductive chromatin sampling during target search. These processes can be separated by measuring the duration of nucleosome binding with subsecond time resolution. To reach this goal, we have developed a fluorescence bleaching technique termed pixel-wise photobleaching profile evolution analysis (3PEA). It exploits the inherent time structure of confocal microscopy images and yields millisecond resolution. 3PEA represents a generally applicable approach to quantitate transient chromatin interactions in the 2- to 500-ms time regime within only ∼1 s needed for a measurement. The green autofluorescent protein (GFP)-tagged Snf2H and Snf2L and the inactive Snf2L+13 splice variant were studied by 3PEA in comparison to the isolated GFP or red autofluorescent protein and a GFP pentamer. Our results reveal that the residence time for transient chromatin binding of Snf2H and Snf2L is <2 ms, and strongly support the view that ISWI-type remodelers are only rarely active in unperturbed cells during G1 phase.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , Photobleaching , Transcription Factors/metabolism , Cell Line , Cell Survival , Chromosomal Proteins, Non-Histone/metabolism , Diffusion , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/metabolism , Humans , Kinetics , Luminescent Proteins/metabolism , Protein Binding , Protein Transport , Red Fluorescent Protein
15.
Methods ; 62(1): 26-38, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23523656

ABSTRACT

The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin.


Subject(s)
DNA/genetics , Gene Expression , Models, Genetic , Nucleosomes , Transcription Factors/genetics , Transcription Initiation, Genetic , Yeasts/genetics , Animals , Binding Sites , Chromatin Assembly and Disassembly , DNA/chemistry , DNA/metabolism , Humans , Nucleic Acid Conformation , Protein Binding , Thermodynamics , Transcription Factors/metabolism , Yeasts/metabolism
16.
Proc Natl Acad Sci U S A ; 107(46): 19873-8, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20974961

ABSTRACT

Chromatin remodeling complexes can translocate nucleosomes along the DNA in an ATP-dependent manner. Here, we studied autofluorescent protein constructs of the human ISWI family members Snf2H, Snf2L, the catalytically inactive Snf2L+13 splice variant, and the accessory Acf1 subunit in living human and mouse cells by fluorescence microscopy/spectroscopy. Except for Snf2L, which was not detected in the U2OS cell line, the endogenous ISWI proteins were abundant at nuclear concentrations between 0.14 and 0.83 µM. A protein interaction analysis showed the association of multimeric Snf2H and Acf1 into a heterotetramer or higher-order ACF complex. During the G1/2 cell cycle phase, Snf2H and Snf2L displayed average residence times <150 ms in the chromatin-bound state. The comparison of active and inactive Snf2H/Snf2L indicated that an immobilized fraction potentially involved in active chromatin remodeling comprised only 1-3%. This fraction was largely increased at replication foci in S phase or at DNA repair sites. To rationalize these findings we propose that ISWI remodelers operate via a "continuous sampling" mechanism: The propensity of nucleosomes to be translocated is continuously tested in transient binding reactions. Most of these encounters are unproductive and efficient remodeling requires an increased binding affinity to chromatin. Due to the relatively high intranuclear remodeler concentrations cellular response times for repositioning a given nucleosome were calculated to be in the range of tens of seconds to minutes.


Subject(s)
Adenosine Triphosphatases/metabolism , Catalytic Domain , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Multiprotein Complexes/metabolism , Nucleosomes/metabolism , Adenosine Triphosphatases/chemistry , Animals , Biocatalysis , Cell Line , Chromosomal Proteins, Non-Histone/chemistry , DNA Repair , DNA Replication , Fluorescence Recovery After Photobleaching , G1 Phase , G2 Phase , Green Fluorescent Proteins/metabolism , Humans , Immobilized Proteins/metabolism , Mice , Protein Binding , Protein Multimerization , Protein Transport , Recombinant Fusion Proteins/metabolism , Spectrometry, Fluorescence , Transcription Factors/chemistry , Transcription Factors/metabolism
17.
Curr Opin Struct Biol ; 80: 102597, 2023 06.
Article in English | MEDLINE | ID: mdl-37087823

ABSTRACT

Heterochromatin formation has been proposed to involve phase transitions on the level of the three-dimensional folding of heterochromatin regions and the liquid-liquid demixing of heterochromatin proteins. Here, I outline the hallmarks of such transitions and the current challenges to detect them in living cells. I further discuss the abundance and properties of prominent heterochromatin proteins and relate them to their potential role in driving phase transitions. Recent data from mouse fibroblasts indicate that pericentric heterochromatin is organized via a reordering transition on the level of heterochromatin regions that does not necessarily involve liquid-liquid demixing of heterochromatin proteins. Evaluating key hallmarks of the different candidate phase transition mechanisms across cell types and species will be needed to complete the current picture.


Subject(s)
Chromatin Assembly and Disassembly , Heterochromatin , Animals , Mice
18.
Cells ; 12(15)2023 07 28.
Article in English | MEDLINE | ID: mdl-37566037

ABSTRACT

Chromatin regulatory processes physically take place in the environment of the cell nucleus, which is filled with the chromosomes and a plethora of smaller biomolecules. The nucleus contains macromolecular assemblies of different sizes, from nanometer-sized protein complexes to micrometer-sized biomolecular condensates, chromosome territories, and nuclear bodies. This multiscale organization impacts the transport processes within the nuclear interior, the global mechanical properties of the nucleus, and the way the nucleus senses and reacts to mechanical stimuli. Here, we discuss recent work on these aspects, including microrheology and micromanipulation experiments assessing the material properties of the nucleus and its subcomponents. We summarize how the properties of multiscale media depend on the time and length scales probed in the experiment, and we reconcile seemingly contradictory observations made on different scales. We also revisit the concept of liquid-like and solid-like material properties for complex media such as the nucleus. We propose that the nucleus can be considered a multiscale viscoelastic medium composed of three major components with distinct properties: the lamina, the chromatin network, and the nucleoplasmic fluid. This multicomponent organization enables the nucleus to serve its different functions as a reaction medium on the nanoscale and as a mechanosensor and structural scaffold on the microscale.


Subject(s)
Cell Nucleus , Chromatin , Cell Nucleus/metabolism , Chromatin/metabolism , Chromosomes
19.
Methods Mol Biol ; 2563: 395-411, 2023.
Article in English | MEDLINE | ID: mdl-36227485

ABSTRACT

Phase separation is emerging as a key mechanism to describe the formation of membraneless organelles in the cell. It depends on the multivalent (self-) interaction properties of the macromolecules involved and can be observed in aqueous solutions under controlled conditions in vitro with purified components. However, to experimentally demonstrate that this process indeed occurs in the complex environment of living cells remains difficult. Here, we describe an assay based on light-induced association of proteins into complexes termed optodroplets that are in the hundred nm to µm size range. The formation and dissociation of these optodroplets can be followed over time in living cells by fluorescence microscopy to evaluate the propensity of proteins to demix and to form phase-separated subcompartments. The optodroplet assay is based on the fusion of a protein of interest with the photolyase homology region (PHR) protein domain from Arabidopsis thaliana, which can undergo reversible homo-oligomerization upon illumination with blue light. Using this approach, candidate proteins and their interaction-deficient or interaction-enhanced variants can be compared to each other or to reference proteins with known phase separation features. By quantifying the resulting microscopy images, the propensity of a given protein construct to assemble into a phase-separated subcompartment can be assessed.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/metabolism , Light , Microscopy, Fluorescence , Organelles/metabolism , Protein Domains , Proteins/metabolism
20.
iScience ; 26(6): 106880, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37260753

ABSTRACT

The transcription factor LEAFY (LFY) plays crucial roles in flower development by activating floral homeotic genes. Activation of LFY targets requires the combined action of LFY and the E3 ubiquitin ligase UFO, although the precise underlying mechanism remains unclear. Here, we show that LFY accumulates in biomolecular condensates within the cytoplasm, while recombinant LFY forms condensates with similar properties in vitro. UFO interacts with LFY within these condensates and marks it for degradation. LFY levels in the nucleus are buffered against changes in total LFY levels induced by proteasome inhibition, UFO overexpression, or mutation of lysine residues in a disordered region of LFY. Perturbation of cytoplasmic LFY condensates by 1,6-hexanediol treatment induces the relocalization of LFY to the nucleus and the subsequent activation of the LFY target AP3 in flowers. Our data suggest that nucleocytoplasmic partitioning, condensation, and ubiquitin-dependent degradation regulate LFY levels in the nucleus to control its activity.

SELECTION OF CITATIONS
SEARCH DETAIL