Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Gastroenterology ; 165(5): 1219-1232, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37507075

ABSTRACT

BACKGROUND & AIMS: BiTE (bispecific T-cell engager) immune therapy has demonstrated clinical activity in multiple tumor indications, but its influence in the tumor microenvironment remains unclear. CLDN18.2 is overexpressed in solid tumors including gastric cancer (GC) and pancreatic ductal adenocarcinoma (PDAC), both of which are characterized by the presence of immunosuppressive cells, including regulatory T cells (Tregs) and few effector T cells (Teffs). METHODS: We evaluated the activity of AMG 910, a CLDN18.2-targeted half-life extended (HLE) BiTE molecule, in GC and PDAC preclinical models and cocultured Tregs and Teffs in the presence of CLDN18.2-HLE-BiTE. RESULTS: AMG 910 induced potent, specific cytotoxicity in GC and PDAC cell lines. In GSU and SNU-620 GC xenograft models, AMG 910 engaged human CD3+ T cells with tumor cells, resulting in significant antitumor activity. AMG 910 monotherapy, in combination with a programmed death-1 (PD-1) inhibitor, suppressed tumor growth and enhanced survival in an orthotopic Panc4.14 PDAC model. Moreover, Treg infusion enhanced the antitumor efficacy of AMG 910 in the Panc4.14 model. In syngeneic KPC models of PDAC, treatment with a mouse surrogate CLDN18.2-HLE-BiTE (muCLDN18.2-HLE-BiTE) or the combination with an anti-PD-1 antibody significantly inhibited tumor growth. Tregs isolated from mice bearing KPC tumors that were treated with muCLDN18.2-HLE-BiTE showed decreased T cell suppressive activity and enhanced Teff cytotoxic activity, associated with increased production of type I cytokines and expression of Teff gene signatures. CONCLUSIONS: Our data suggest that BiTE molecule treatment converts Treg function from immunosuppressive to immune enhancing, leading to antitumor activity in immunologically "cold" tumors.


Subject(s)
Antibodies, Bispecific , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , T-Lymphocytes, Regulatory/metabolism , Antibodies, Bispecific/genetics , Antibodies, Bispecific/pharmacology , Pancreatic Neoplasms/drug therapy , Cell Adhesion Molecules , Carcinoma, Pancreatic Ductal/drug therapy , Immunity , Tumor Microenvironment , Claudins
2.
JCI Insight ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298276

ABSTRACT

The dual tumor-suppressive and promoting function of TGFß signaling has made its targeting challenging. We hereby examined the effects of TGFß depletion by AVID200/BMS-986416(TGFß-TRAP), a TGFß ligand trap, on the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) murine models with different organ-specific metastasis. Our study demonstrated that TGFß-TRAP potentiates the efficacy of anti-PD-1 in a PDAC orthotopic murine model with liver metastasis tropism, significantly reducing liver metastases. We further demonstrated the heterogeneous response of cytotoxic effector T-cells to combination TGFß-TRAP and anti-PD-1 treatment across several tumor models. Single-nuclear RNA-sequencing suggested that TGFß-TRAP modulates cancer associated fibroblast (CAF) heterogeneity and suppresses neutrophil degranulation and CD4+ T-cell response to neutrophil degranulation. Ligand-receptor analysis indicated that TGFß-TRAP may modulate the CCL5-CCR5 axis as well as co-stimulatory and checkpoint signaling from CAFs and myeloid cells. Notably, the most highly expressed ligands of CCR5 shifted from the immunosuppressive CCL5 to CCL7 and CCL8, which may mediate the immune agonist activity of CCR5 following TGFß-TRAP and anti-PD-1 combination treatment. This study suggested that TGFß depletion modulates CAF heterogeneity and potentially reprograms CAFs and myeloid cells into anti-tumor immune agonists in PDAC, supporting the validation of such effects in human specimen.

3.
J Hematol Oncol ; 17(1): 62, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113096

ABSTRACT

Due to the challenge for intratumoral administration, innate agonists have not made it beyond preclinical studies for efficacy testing in most tumor types. Pancreatic ductal adenocarcinoma (PDAC) has a hostile tumor microenvironment that renders T cells dysfunctional. Innate agonist treatments may serve as a T cell priming mechanism to sensitize PDACs to anti-PD-1 antibody (a-PD-1) treatment. Using a transplant mouse model with spontaneously formed liver metastasis, a genetically engineered KPC mouse model that spontaneously develops PDAC, and a human patient-derived xenograft model, we compared the antitumor efficacy between intrahepatic/intratumoral and intramuscular systemic administration of BMS-986301, a next-generation STING agonist. Flow cytometry, Nanostring, and cytokine assays were used to evaluate local and systemic immune responses. This study demonstrated that administration of STING agonist systemically via intramuscular injection is equivalent to its intratumoral injection in inducing both effector T cell response and antitumor efficacy. Compared to intratumoral administration, T cell exhaustion and immunosuppressive signals induced by systemic administration were attenuated. Nonetheless, either intratumoral or systemic treatment of STING agonist was associated with increased expression of CTLA-4 on tumor-infiltrating T cells. However, the combination of a-PD-1 and anti-CTLA-4 antibody with systemic STING agonist demonstrated the antitumor efficacy in the KPC mouse spontaneous PDAC model. The mouse pancreatic and liver orthotopic model of human patient-derived xenograft reconstituted with PBMC also showed that antitumor and abscopal effects of both intratumoral and intramuscular STING agonist are equivalent. Taken together, this study supports the clinical development of innate agonists via systemic administration for treating PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Membrane Proteins , Pancreatic Neoplasms , Animals , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Humans , Mice , Membrane Proteins/agonists , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Injections, Intralesional , Xenograft Model Antitumor Assays , Tumor Microenvironment/drug effects , Cell Line, Tumor
4.
J Exp Med ; 219(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35404390

ABSTRACT

The resistance of pancreatic ductal adenocarcinoma (PDAC) to immune checkpoint inhibitors (ICIs) is attributed to the immune-quiescent and -suppressive tumor microenvironment (TME). We recently found that CCR2 and CCR5 were induced in PDAC following treatment with anti-PD-1 antibody (αPD-1); thus, we examined PDAC vaccine or radiation therapy (RT) as T cell priming mechanisms together with BMS-687681, a dual antagonist of CCR2 and CCR5 (CCR2/5i), in combination with αPD-1 as new treatment strategies. Using PDAC mouse models, we demonstrated that RT followed by αPD-1 and prolonged treatment with CCR2/5i conferred better antitumor efficacy than other combination treatments tested. The combination of RT + αPD-1 + CCR2/5i enhanced intratumoral effector and memory T cell infiltration but suppressed regulatory T cell, M2-like tumor-associated macrophage, and myeloid-derived suppressive cell infiltration. RNA sequencing showed that CCR2/5i partially inhibited RT-induced TLR2/4 and RAGE signaling, leading to decreased expression of immunosuppressive cytokines including CCL2/CCL5, but increased expression of effector T cell chemokines such as CCL17/CCL22. This study thus supports the clinical development of CCR2/5i in combination with RT and ICIs for PDAC treatment.


Subject(s)
Adenocarcinoma , CCR5 Receptor Antagonists , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Receptors, CCR2 , Adenocarcinoma/drug therapy , Adenocarcinoma/radiotherapy , Animals , CCR5 Receptor Antagonists/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/radiotherapy , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/radiotherapy , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR5 , Tumor Microenvironment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL