Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Physiol Renal Physiol ; 307(7): F833-43, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25100281

ABSTRACT

The kidney adjusts K⁺ excretion to match intake in part by regulation of the activity of apical K⁺ secretory channels, including renal outer medullary K⁺ (ROMK)-like K⁺ channels, in the cortical collecting duct (CCD). ANG II inhibits ROMK channels via the ANG II type 1 receptor (AT1R) during dietary K⁺ restriction. Because AT1Rs and ANG II type 2 receptors (AT2Rs) generally function in an antagonistic manner, we sought to characterize the regulation of ROMK channels by the AT2R. Patch-clamp experiments revealed that ANG II increased ROMK channel activity in CCDs isolated from high-K⁺ (HK)-fed but not normal K⁺ (NK)-fed rats. This response was blocked by PD-123319, an AT2R antagonist, but not by losartan, an AT1R antagonist, and was mimicked by the AT2R agonist CGP-42112. Nitric oxide (NO) synthase is present in CCD cells that express ROMK channels. Blockade of NO synthase with N-nitro-l-arginine methyl ester and free NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt completely abolished ANG II-stimulated ROMK channel activity. NO enhances the synthesis of cGMP, which inhibits phosphodiesterases (PDEs) that normally degrade cAMP; cAMP increases ROMK channel activity. Pretreatment of CCDs with IBMX, a broad-spectrum PDE inhibitor, or cilostamide, a PDE3 inhibitor, abolished the stimulatory effect of ANG II on ROMK channels. Furthermore, PKA inhibitor peptide, but not an activator of the exchange protein directly activated by cAMP (Epac), also prevented the stimulatory effect of ANG II. We conclude that ANG II acts at the AT2R to stimulate ROMK channel activity in CCDs from HK-fed rats, a response opposite to that mediated by the AT1R in dietary K⁺-restricted animals, via a NO/cGMP pathway linked to a cAMP-PKA pathway.


Subject(s)
Kidney Tubules, Collecting/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium, Dietary/metabolism , Receptor, Angiotensin, Type 2/metabolism , Adaptation, Physiological , Animals , Female , Male , Patch-Clamp Techniques , Rats, Sprague-Dawley
2.
Am J Physiol Renal Physiol ; 295(3): F780-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18579708

ABSTRACT

Apical large-conductance Ca(2+)-activated K(+) (BK) channels in the cortical collecting duct (CCD) mediate flow-stimulated K(+) secretion. Dietary K(+) loading for 10-14 days leads to an increase in BK channel mRNA abundance, enhanced flow-stimulated K(+) secretion in microperfused CCDs, and a redistribution of immunodetectable channels from an intracellular pool to the apical membrane (Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM. Am J Physiol Renal Physiol 289: F922-F932, 2005). To test whether this adaptation was mediated by a K(+)-induced increase in aldosterone, New Zealand White rabbits were fed a low-Na(+) (LS) or high-Na(+) (HS) diet for 7-10 days to alter circulating levels of aldosterone but not serum K(+) concentration. Single CCDs were isolated for quantitation of BK channel subunit (total, alpha-splice variants, beta-isoforms) mRNA abundance by real-time PCR and measurement of net transepithelial Na(+) (J(Na)) and K(+) (J(K)) transport by microperfusion; kidneys were processed for immunolocalization of BK alpha-subunit by immunofluorescence microscopy. At the time of death, LS rabbits excreted no urinary Na(+) and had higher circulating levels of aldosterone than HS animals. The relative abundance of BK alpha-, beta(2)-, and beta(4)-subunit mRNA and localization of immunodetectable alpha-subunit were similar in CCDs from LS and HS animals. In response to an increase in tubular flow rate from approximately 1 to 5 nl.min(-1).mm(-1), the increase in J(Na) was greater in LS vs. HS rabbits, yet the flow-stimulated increase in J(K) was similar in both groups. These data suggest that aldosterone does not contribute to the regulation of BK channel expression/activity in response to dietary K(+) loading.


Subject(s)
Aldosterone/metabolism , Kidney Tubules, Collecting/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Potassium, Dietary/metabolism , Sodium, Dietary/metabolism , Aldosterone/blood , Animals , Cations/metabolism , Electrolytes/blood , Electrolytes/urine , Immunohistochemistry , In Vitro Techniques , RNA, Messenger/metabolism , Rabbits
3.
Pediatr Nephrol ; 22(7): 915-25, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17333000

ABSTRACT

The distal nephron and colon are the primary sites of regulation of potassium (K(+)) homeostasis, responsible for maintaining a zero balance in adults and net positive balance in growing infants and children. Distal nephron segments can either secrete or reabsorb K(+) depending on the metabolic needs of the organism. In the healthy adult kidney, K(+) secretion predominates over K(+) absorption. Baseline K(+) secretion occurs via the apical low-conductance secretory K(+) (SK) channel, whereas the maxi-K channel mediates flow-stimulated net urinary K(+) secretion. The K(+) retention characteristic of the neonatal kidney appears to be due not only to the absence of apical secretory K(+) channels in the distal nephron but also to a predominance of apical H-K-adenosine triphosphatase (ATPase), which presumably mediates K(+) absorption. Both luminal and peritubular factors regulate the balance between K(+) secretion and absorption. Perturbation in any of these factors can lead to K(+) imbalance. In turn, these factors may serve as effective targets for the treatment of both hyper-and hypokalemia. The purpose of this review is to present an overview of recent advances in our understanding of mechanisms of K(+) transport in the maturing kidney.


Subject(s)
Kidney/metabolism , Potassium/metabolism , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , H(+)-K(+)-Exchanging ATPase/metabolism , Humans , Ion Transport/physiology , Kidney/growth & development , Kidney Tubules, Collecting/growth & development , Kidney Tubules, Collecting/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Models, Biological , Potassium Channels, Inwardly Rectifying/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL