Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nature ; 597(7875): 196-205, 2021 09.
Article in English | MEDLINE | ID: mdl-34497388

ABSTRACT

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Subject(s)
Cell Movement , Cell Tracking , Cells/cytology , Developmental Biology/methods , Embryo, Mammalian/cytology , Fetus/cytology , Information Dissemination , Organogenesis , Adult , Animals , Atlases as Topic , Cell Culture Techniques , Cell Survival , Data Visualization , Female , Humans , Imaging, Three-Dimensional , Male , Models, Animal , Organogenesis/genetics , Organoids/cytology , Stem Cells/cytology
2.
Development ; 146(5)2019 03 11.
Article in English | MEDLINE | ID: mdl-30858200

ABSTRACT

We review here some of the historical highlights in exploratory studies of the vertebrate embryonic structure known as the neural crest. The study of the molecular properties of the cells that it produces, their migratory capacities and plasticity, and the still-growing list of tissues that depend on their presence for form and function, continue to enrich our understanding of congenital malformations, paediatric cancers and evolutionary biology. Developmental biology has been key to our understanding of the neural crest, starting with the early days of experimental embryology and through to today, when increasingly powerful technologies contribute to further insight into this fascinating vertebrate cell population.


Subject(s)
Gene Expression Regulation, Developmental , Neural Crest/physiology , Animals , Biological Evolution , Cell Differentiation , Cell Lineage , Cell Movement , Chick Embryo , Coturnix , Developmental Biology , Genetic Predisposition to Disease , Humans , Neoplasms/metabolism
3.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299200

ABSTRACT

Forty percent of somatotroph tumors harbor recurrent activating GNAS mutations, historically called the gsp oncogene. In gsp-negative somatotroph tumors, GNAS expression itself is highly variable; those with GNAS overexpression most resemble phenotypically those carrying the gsp oncogene. GNAS is monoallelically expressed in the normal pituitary due to methylation-based imprinting. We hypothesize that changes in GNAS imprinting of gsp-negative tumors affect GNAS expression levels and tumorigenesis. We characterized the GNAS locus in two independent somatotroph tumor cohorts: one of 23 tumors previously published (PMID: 31883967) and classified by pan-genomic analysis, and a second with 82 tumors. Multi-omics analysis of the first cohort identified a significant difference between gsp-negative and gsp-positive tumors in the methylation index at the known differentially methylated region (DMR) of the GNAS A/B transcript promoter, which was confirmed in the larger series of 82 tumors. GNAS allelic expression was analyzed using a polymorphic Fok1 cleavage site in 32 heterozygous gsp-negative tumors. GNAS expression was significantly reduced in the 14 tumors with relaxed GNAS imprinting and biallelic expression, compared to 18 tumors with monoallelic expression. Tumors with relaxed GNAS imprinting showed significantly lower SSTR2 and AIP expression levels. Altered A/B DMR methylation was found exclusively in gsp-negative somatotroph tumors. 43% of gsp-negative tumors showed GNAS imprinting relaxation, which correlated with lower GNAS, SSTR2 and AIP expression, indicating lower sensitivity to somatostatin analogues and potentially aggressive behavior.


Subject(s)
Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Pituitary Neoplasms/genetics , Somatotrophs/metabolism , Adult , Aged , Aged, 80 and over , Alleles , Chromogranins/metabolism , DNA Methylation , Epigenesis, Genetic , Female , GTP-Binding Protein alpha Subunits, Gs/metabolism , Gene Expression Regulation, Neoplastic , Genomic Imprinting , Humans , Male , Middle Aged , Mutation , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Somatotrophs/pathology , Young Adult
4.
Hum Genet ; 138(8-9): 917-936, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30073412

ABSTRACT

Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.


Subject(s)
Eye/metabolism , Hedgehog Proteins/genetics , Signal Transduction/genetics , Animals , Gene Expression Regulation, Developmental/genetics , Humans
5.
Genome Res ; 26(4): 474-85, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26893459

ABSTRACT

Ocular developmental anomalies (ODA) such as anophthalmia/microphthalmia (AM) or anterior segment dysgenesis (ASD) have an estimated combined prevalence of 3.7 in 10,000 births. Mutations in SOX2 are the most frequent contributors to severe ODA, yet account for a minority of the genetic drivers. To identify novel ODA loci, we conducted targeted high-throughput sequencing of 407 candidate genes in an initial cohort of 22 sporadic ODA patients. Patched 1 (PTCH1), an inhibitor of sonic hedgehog (SHH) signaling, harbored an enrichment of rare heterozygous variants in comparison to either controls, or to the other candidate genes (four missense and one frameshift); targeted resequencing of PTCH1 in a second cohort of 48 ODA patients identified two additional rare nonsynonymous changes. Using multiple transient models and a CRISPR/Cas9-generated mutant, we show physiologically relevant phenotypes altering SHH signaling and eye development upon abrogation of ptch1 in zebrafish for which in vivo complementation assays using these models showed that all six patient missense mutations affect SHH signaling. Finally, through transcriptomic and ChIP analyses, we show that SOX2 binds to an intronic domain of the PTCH1 locus to regulate PTCH1 expression, findings that were validated both in vitro and in vivo. Together, these results demonstrate that PTCH1 mutations contribute to as much as 10% of ODA, identify the SHH signaling pathway as a novel effector of SOX2 activity during human ocular development, and indicate that ODA is likely the result of overactive SHH signaling in humans harboring mutations in either PTCH1 or SOX2.


Subject(s)
Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Patched-1 Receptor/genetics , SOXB1 Transcription Factors/metabolism , Alleles , Animals , Case-Control Studies , Disease Models, Animal , Genetic Loci , Heterozygote , Humans , Mutation , Patched-1 Receptor/metabolism , Phenotype , Sequence Analysis, DNA , Zebrafish
6.
Genet Res (Camb) ; 101: e6, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31030682

ABSTRACT

Noonan syndrome and related disorders are a group of clinically and genetically heterogeneous conditions caused by mutations in genes of the RAS/MAPK pathway. Noonan syndrome causes multiple congenital anomalies, which are frequently accompanied by hypertrophic cardiomyopathy (HCM). We report here a Tunisian patient with a severe phenotype of Noonan syndrome including neonatal HCM, facial dysmorphism, severe failure to thrive, cutaneous abnormalities, pectus excavatum and severe stunted growth, who died in her eighth month of life. Using whole exome sequencing, we identified a de novo mutation in exon 7 of the RAF1 gene: c.776C > A (p.Ser259Tyr). This mutation affects a highly conserved serine residue, a main mediator of Raf-1 inhibition via phosphorylation. To our knowledge the c.776C > A mutation has been previously reported in only one case with prenatally diagnosed Noonan syndrome. Our study further supports the striking correlation of RAF1 mutations with HCM and highlights the clinical severity of Noonan syndrome associated with a RAF1 p.Ser259Tyr mutation.


Subject(s)
Cardiomyopathy, Hypertrophic/physiopathology , Noonan Syndrome/physiopathology , Proto-Oncogene Proteins c-raf/genetics , Cardiomyopathy, Hypertrophic/genetics , Female , Humans , Infant , Mutation , Noonan Syndrome/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-raf/metabolism , Tunisia
7.
Genesis ; 56(6-7): e23221, 2018 06.
Article in English | MEDLINE | ID: mdl-30134070

ABSTRACT

Members of the large family of Hox transcription factors are encoded by genes whose tightly regulated expression in development and in space within different embryonic tissues confer positional identity from the neck to the tips of the limbs. Many structures of the face, head, and heart develop from cell populations expressing few or no Hox genes. Hoxb1 is the member of its chromosomal cluster expressed in the most rostral domain during vertebrate development, but never by the multipotent neural crest cell population anterior to the cerebellum. We have developed a novel floxed transgenic mouse line, CAG-Hoxb1,-EGFP (CAG-Hoxb1), which upon recombination by Cre recombinase conditionally induces robust Hoxb1 and eGFP overexpression. When induced within the neural crest lineage, pups die at birth. A variable phenotype develops from E11.5 on, associating frontonasal hypoplasia/aplasia, micrognathia/agnathia, major ocular and forebrain anomalies, and cardiovascular malformations. Neural crest derivatives in the body appear unaffected. Transcription of effectors of developmental signaling pathways (Bmp, Shh, Vegfa) and transcription factors (Pax3, Sox9) is altered in mutants. These outcomes emphasize that repression of Hoxb1, along with other paralog group 1 and 2 Hox genes, is strictly necessary in anterior cephalic NC for craniofacial, visual, auditory, and cardiovascular development.


Subject(s)
Craniofacial Abnormalities/genetics , Homeodomain Proteins/physiology , Animals , Cell Lineage/physiology , Cell Movement , Craniofacial Abnormalities/embryology , Ectopic Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Head/embryology , Heart/embryology , Heart Defects, Congenital/embryology , Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Neural Crest/metabolism , Signal Transduction
8.
Mol Carcinog ; 56(4): 1290-1301, 2017 04.
Article in English | MEDLINE | ID: mdl-27862318

ABSTRACT

Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.


Subject(s)
DNA Methylation , Genes, Tumor Suppressor , Membrane Proteins/genetics , Neuroblastoma/genetics , Cell Line, Tumor , Child , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histone Code , Humans
9.
Dev Dyn ; 245(3): 388-401, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26442704

ABSTRACT

BACKGROUND: Retinoic acid (RA), the bioactive derivative of vitamin A, is essential for vertebrate heart development. Both excess and reduced RA signaling lead to cardiovascular malformations affecting the outflow tract (OFT). To address the cellular mechanisms underlying the effects of RA signaling during OFT morphogenesis, we used transient maternal RA supplementation to rescue the early lethality resulting from inactivation of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene. RESULTS: By embryonic day 13.5, all rescued Raldh2(-/-) hearts exhibit severe, reproducible OFT septation defects, although wild-type and Raldh2(+/-) littermates have normal hearts. Cardiac neural crest cells (cNCC) were present in OFT cushions of Raldh2(-/-) mutant embryos but ectopically located in the periphery of the endocardial cushions, rather than immediately underlying the endocardium. Excess mesenchyme was generated by Raldh2(-/-) mutant endocardium, which displaced cNCC derivatives from their subendocardial, medial position. CONCLUSIONS: RA signaling affects not only cNCC numbers but also their position relative to endocardial mesenchyme during the septation process. Our study shows that inappropriate coordination between the different cell types of the OFT perturbs its morphogenesis and leads to a severe congenital heart defect, persistent truncus arteriosus.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Cell Lineage/physiology , Heart/embryology , Organogenesis/physiology , Signal Transduction/physiology , Tretinoin/metabolism , Aldehyde Oxidoreductases/genetics , Animals , Mice , Mice, Knockout
10.
Nat Genet ; 39(4): 454-6, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17353897

ABSTRACT

Neural progenitor proliferation and migration influence brain size during neurogenesis. We report an autosomal recessive microcephaly syndrome cosegregating with a homozygous balanced translocation between chromosomes 3p and 10q, and we show that a position effect at the breakpoint on chromosome 3 silences the eomesodermin transcript (EOMES), also known as T-box-brain2 (TBR2). Together with the expression pattern of EOMES in the developing human brain, our data suggest that EOMES is involved in neuronal division and/or migration. Thus, mutations in genes encoding not only mitotic and apoptotic proteins but also transcription factors may be responsible for malformative microcephaly syndromes.


Subject(s)
Agenesis of Corpus Callosum , Gene Silencing , Homozygote , Microcephaly/genetics , T-Box Domain Proteins/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 3 , DNA Mutational Analysis , Humans , Male , Pedigree , Translocation, Genetic
11.
Gastroenterology ; 142(3): 453-462.e3, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22155368

ABSTRACT

BACKGROUND & AIMS: Short-bowel syndrome usually results from surgical resection of the small intestine for diseases such as intestinal atresias, volvulus, and necrotizing enterocolitis. Patients with congenital short-bowel syndrome (CSBS) are born with a substantial shortening of the small intestine, to a mean length of 50 cm, compared with a normal length at birth of 190-280 cm. They also are born with intestinal malrotation. Because CSBS occurs in many consanguineous families, it is considered to be an autosomal-recessive disorder. We aimed to identify and characterize the genetic factor causing CSBS. METHODS: We performed homozygosity mapping using 610,000 K single-nucleotide polymorphism arrays to analyze the genomes of 5 patients with CSBS. After identifying a gene causing the disease, we determined its expression pattern in human embryos. We also overexpressed forms of the gene product that were and were not associated with CSBS in Chinese Hamster Ovary and T84 cells and generated a zebrafish model of the disease. RESULTS: We identified loss-of-function mutations in Coxsackie- and adenovirus receptor-like membrane protein (CLMP) in CSBS patients. CLMP is a tight-junction-associated protein that is expressed in the intestine of human embryos throughout development. Mutations in CLMP prevented its normal localization to the cell membrane. Knock-down experiments in zebrafish resulted in general developmental defects, including shortening of the intestine and the absence of goblet cells. Because goblet cells are characteristic for the midintestine in zebrafish, which resembles the small intestine in human beings, the zebrafish model mimics CSBS. CONCLUSIONS: Loss-of-function mutations in CLMP cause CSBS in human beings, likely by interfering with tight-junction formation, which disrupts intestinal development. Furthermore, we developed a zebrafish model of CSBS.


Subject(s)
Intestine, Small/abnormalities , Mutation, Missense , Receptors, Virus/genetics , Short Bowel Syndrome/genetics , Adolescent , Adult , Animals , CHO Cells , Child , Child, Preschool , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Cricetinae , Cricetulus , Disease Models, Animal , Female , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Intestine, Small/metabolism , Male , Morphogenesis , Phenotype , Polymorphism, Single Nucleotide , Receptors, Virus/metabolism , Short Bowel Syndrome/embryology , Short Bowel Syndrome/metabolism , Short Bowel Syndrome/pathology , Transfection , Young Adult , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
12.
J Med Genet ; 49(6): 373-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22577225

ABSTRACT

BACKGROUND: Otocephaly or dysgnathia complex is characterised by mandibular hypoplasia/agenesis, ear anomalies, microstomia, and microglossia; the molecular basis of this developmental defect is largely unknown in humans. METHODS AND RESULTS: This study reports a large family in which two cousins with micro/anophthalmia each gave birth to at least one child with otocephaly, suggesting a genetic relationship between anophthalmia and otocephaly. OTX2, a known microphthalmia locus, was screened in this family and a frameshifting mutation was found. The study subsequently identified in one unrelated otocephalic patient a sporadic OTX2 mutation. Because OTX2 mutations may not be sufficient to cause otocephaly, the study assayed the potential of otx2 to modify craniofacial phenotypes in the context of known otocephaly gene suppression in vivo. It was found that otx2 can interact genetically with pgap1, prrx1, and msx1 to exacerbate mandibular and midline defects during zebrafish development. However, sequencing of these loci in the OTX2-positive families did not unearth likely pathogenic lesions, suggesting further genetic heterogeneity and complexity. CONCLUSION: Identification of OTX2 involvement in otocephaly/dysgnathia in humans, even if loss of function mutations at this locus does not sufficiently explain the complex anatomical defects of these patients, suggests the requirement for a second genetic hit. Consistent with this notion, trans suppression of otx2 and other developmentally related genes recapitulate aspects of the otocephaly phenotype in zebrafish. This study highlights the combined utility of genetics and functional approaches to dissect both the regulatory pathways that govern craniofacial development and the genetics of this disease group.


Subject(s)
Holoprosencephaly/genetics , Jaw Abnormalities/genetics , Otx Transcription Factors/genetics , Animals , Base Sequence , Disease Models, Animal , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/pathology , Female , Holoprosencephaly/pathology , Humans , Jaw Abnormalities/pathology , Molecular Sequence Data , Pedigree , Sequence Analysis, DNA , Zebrafish
13.
Nat Commun ; 14(1): 1867, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015919

ABSTRACT

Metastatic melanoma develops once transformed melanocytic cells begin to de-differentiate into migratory and invasive melanoma cells with neural crest cell (NCC)-like and epithelial-to-mesenchymal transition (EMT)-like features. However, it is still unclear how transformed melanocytes assume a metastatic melanoma cell state. Here, we define DNA methylation changes that accompany metastatic progression in melanoma patients and discover Nuclear Receptor Subfamily 2 Group F, Member 2 - isoform 2 (NR2F2-Iso2) as an epigenetically regulated metastasis driver. NR2F2-Iso2 is transcribed from an alternative transcriptional start site (TSS) and it is truncated at the N-terminal end which encodes the NR2F2 DNA-binding domain. We find that NR2F2-Iso2 expression is turned off by DNA methylation when NCCs differentiate into melanocytes. Conversely, this process is reversed during metastatic melanoma progression, when NR2F2-Iso2 becomes increasingly hypomethylated and re-expressed. Our functional and molecular studies suggest that NR2F2-Iso2 drives metastatic melanoma progression by modulating the activity of full-length NR2F2 (Isoform 1) over EMT- and NCC-associated target genes. Our findings indicate that DNA methylation changes play a crucial role during metastatic melanoma progression, and their control of NR2F2 activity allows transformed melanocytes to acquire NCC-like and EMT-like features. This epigenetically regulated transcriptional plasticity facilitates cell state transitions and metastatic spread.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Cell Line, Tumor , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Epigenesis, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , Gene Expression Regulation, Neoplastic , COUP Transcription Factor II/metabolism
14.
Am J Hum Genet ; 85(1): 106-11, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19559399

ABSTRACT

FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family. Although polymorphisms within the first intron of the FTO gene have been associated with obesity, the physiological role of FTO remains unknown. Here we show that a R316Q mutation, inactivating FTO enzymatic activity, is responsible for an autosomal-recessive lethal syndrome. Cultured skin fibroblasts from affected subjects showed impaired proliferation and accelerated senescence. These findings indicate that FTO is essential for normal development of the central nervous and cardiovascular systems in human and establish that a mutation in a human member of the AlkB-related dioxygenase family results in a severe polymalformation syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Genetic Predisposition to Disease , Growth Disorders/genetics , Mutation , Proteins/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Pedigree , Sequence Alignment
15.
Birth Defects Res A Clin Mol Teratol ; 94(9): 683-92, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22806986

ABSTRACT

BACKGROUND: Neural tube defects (NTDs) are common human birth defects with a complex etiology. To develop a comprehensive knowledge of the genes expressed during normal neurulation, we established transcriptomes from human neural tube fragments during and after neurulation using long Serial Analysis of Gene Expression (long-SAGE). METHODS: Rostral and caudal neural tubes were dissected from normal human embryos aged between 26 and 32 days of gestation. Tissues from the same region and Carnegie stage were pooled (n ≥ 4) and total RNA extracted to construct four long-SAGE libraries. Tags were mapped using the UniGene Homo sapiens 17 bp tag-to-gene best mapping set. Differentially expressed genes were identified by chi-square or Fisher's exact test, and validation was performed for a subset of those transcripts using in situ hybridization. In silico analyses were performed with BinGO and EXPANDER. RESULTS: We observed most genes to be similarly regulated in rostral and caudal regions, but expression profiles differed during and after closure. In silico analysis found similar enrichments in both regions for biologic process terms, transcription factor binding and miRNA target motifs. Twelve genes potentially expressing alternate isoforms by region or developmental stage, and the microRNAs miR-339-5p, miR-141/200a, miR-23ab, and miR-129/129-5p are among several potential candidates identified here for future research. CONCLUSIONS: Time appears to influence gene expression in the developing central nervous system more than location. These data provide a novel complement to traditional strategies of identifying genes associated with human NTDs and offer unique insight into the genes associated with normal human neurulation.


Subject(s)
Gene Expression Regulation, Developmental , MicroRNAs/genetics , Neural Tube/metabolism , Neurulation/genetics , RNA, Messenger/genetics , Abortion, Legal , Chromosome Mapping , Computer Simulation , Embryo, Mammalian , Female , Gene Expression Profiling , Genomic Library , Humans , In Situ Hybridization , Models, Genetic , Neural Tube/cytology , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Tube Defects/pathology , Oligonucleotide Array Sequence Analysis , Pregnancy , Time Factors , Transcription, Genetic
16.
Neoplasia ; 24(2): 120-132, 2022 02.
Article in English | MEDLINE | ID: mdl-34959031

ABSTRACT

The MAPK/ERK pathway regulates a variety of physiological cellular functions, including cell proliferation and survival. It is abnormally activated in many types of human cancers in response to driver mutations in regulators of this pathway that trigger tumor initiation. The early steps of oncogenic progression downstream of ERK overactivation are poorly understood due to a lack of appropriate models. We show here that ERK1/2 overactivation in the trunk neural tube of the chicken embryo through expression of a constitutively active form of the upstream kinase MEK1 (MEK1ca), rapidly provokes a profound change in the transcriptional signature of developing spinal cord cells. These changes are concordant with a previously established role of the tyrosine kinase receptor ligand FGF8 acting via the ERK1/2 effectors to maintain an undifferentiated state. Furthermore, we show that MEK1ca-transfected spinal cord cells lose neuronal identity, retain caudal markers, and ectopically express potential effector oncogenes, such as AQP1. MEK1ca expression in the developing spinal cord from the chicken embryo is thus a tractable in vivo model to identify the mechanisms fostering neoplasia and malignancy in ERK-induced tumorigenesis of neural origins.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblast Growth Factor 8/metabolism , Signal Transduction , Spinal Cord/metabolism , Animals , Chickens , Disease Models, Animal , Humans , Spinal Cord/pathology
17.
Front Cell Dev Biol ; 10: 1013001, 2022.
Article in English | MEDLINE | ID: mdl-36353506

ABSTRACT

Recurrent missense mutations of the PIK3CA oncogene are among the most frequent drivers of human cancers. These often lead to constitutive activation of its product p110α, a phosphatidylinositol 3-kinase (PI3K) catalytic subunit. In addition to causing a broad range of cancers, the H1047R mutation is also found in affected tissues of a distinct set of congenital tumors and malformations. Collectively termed PIK3CA-related disorders (PRDs), these lead to overgrowth of brain, adipose, connective and musculoskeletal tissues and/or blood and lymphatic vessel components. Vascular malformations are frequently observed in PRD, due to cell-autonomous activation of PI3K signaling within endothelial cells. These, like most muscle, connective tissue and bone, are derived from the embryonic mesoderm. However, important organ systems affected in PRDs are neuroectodermal derivatives. To further examine their development, we drove the most common post-zygotic activating mutation of Pik3ca in neural crest and related embryonic lineages. Outcomes included macrocephaly, cleft secondary palate and more subtle skull anomalies. Surprisingly, Pik3ca-mutant subpopulations of neural crest origin were also associated with widespread cephalic vascular anomalies. Mesectodermal neural crest is a major source of non-endothelial connective tissue in the head, but not the body. To examine the response of vascular connective tissues of the body to constitutive Pik3ca activity during development, we expressed the mutation by way of an Egr2 (Krox20) Cre driver. Lineage tracing led us to observe new lineages that had normally once expressed Krox20 and that may be co-opted in pathogenesis, including vascular pericytes and perimysial fibroblasts. Finally, Schwann cell precursors having transcribed either Krox20 or Sox10 and induced to express constitutively active PI3K were associated with vascular and other tumors. These murine phenotypes may aid discovery of new candidate human PRDs affecting craniofacial and vascular smooth muscle development as well as the reciprocal paracrine signaling mechanisms leading to tissue overgrowth.

18.
Methods Mol Biol ; 2235: 61-87, 2021.
Article in English | MEDLINE | ID: mdl-33576971

ABSTRACT

The goal of lineage tracing is to understand body formation over time by discovering which cells are the progeny of a specific, identified, ancestral progenitor. Subsidiary questions include unequivocal identification of what they have become, how many descendants develop, whether they live or die, and where they are located in the tissue or body at the end of the window examined. A classical approach in experimental embryology, lineage tracing continues to be used in developmental biology and stem cell and cancer research, wherever cellular potential and behavior need to be studied in multiple dimensions, of which one is time. Each technical approach has its advantages and drawbacks. This chapter, with some previously unpublished data, will concentrate nonexclusively on the use of interspecies chimeras to explore the origins of perivascular (or mural) cells, of which those adjacent to the vascular endothelium are termed pericytes for this purpose. These studies laid the groundwork for our understanding that pericytes derive from progenitor mesenchymal pools of multiple origins in the vertebrate embryo, some of which persist into adulthood. The results obtained through xenografting, like in the methodology described here, complement those obtained through genetic lineage-tracing techniques within a given species.


Subject(s)
Cell Lineage/physiology , Pericytes/cytology , Transplantation, Heterologous/methods , Animals , Biological Ontologies , Cell Differentiation , Cell Lineage/genetics , Chick Embryo , Chimera/genetics , Chimera/physiology , Endothelium, Vascular , Germ Cells , Humans , Pericytes/metabolism , Stem Cells
19.
J Cardiovasc Dev Dis ; 8(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918884

ABSTRACT

Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.

20.
Dermatopathology (Basel) ; 8(3): 301-314, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34449585

ABSTRACT

Cutaneous melanomas are exceptional in children and represent a variety of clinical situations, each with a different prognosis. In congenital nevi, the risk of transformation is correlated with the size of the nevus. The most frequent type is lateral transformation, extremely rare before puberty, reminiscent of a superficial spreading melanoma (SSM) ex-nevus. Deep nodular transformation is much rarer, can occur before puberty, and must be distinguished from benign proliferative nodules. Superficial spreading melanoma can also arise within small nevi, which were not visible at birth, usually after puberty, and can reveal a cancer predisposition syndrome (CDKN2A or CDK4 germline mutations). Prognosis is correlated with classical histoprognostic features (mainly Breslow thickness). Spitz tumors are frequent in adolescents and encompass benign (Spitz nevus), intermediate (atypical Spitz tumor), and malignant forms (malignant Spitz tumor). The whole spectrum is characterized by specific morphology with spindled and epithelioid cells, genetic features, and an overall favorable outcome even if a regional lymph node is involved. Nevoid melanomas are rare and difficult to diagnose clinically and histologically. They can arise in late adolescence. Their prognosis is currently not very well ascertained. A small group of melanomas remains unclassified after histological and molecular assessment.

SELECTION OF CITATIONS
SEARCH DETAIL