Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
J Dairy Sci ; 104(4): 4317-4325, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33551165

ABSTRACT

Yucca schidigera (YS) is a species of plant rich in antimicrobials, antioxidants, and immunomodulators. It has been used as feed additive to improve animal performance and decrease methane emissions in cattle. However, few studies have evaluated YS in dairy calves. In this study, we evaluated the effects of YS on the growth performance, antioxidant capacity, and immune function in dairy calves before weaning. We randomly assigned 40 newborn female Holstein calves (4 d old; 40 ± 5 kg of body weight) to 1 of 4 treatments (n = 10 per treatment), which were fed 0, 3, 6, or 9 g/d of YS powder. The YS allowance was mixed into milk or milk replacer and fed twice daily. Dry matter intake (both liquid and starter feed) and fecal score were recorded daily, and body weight, withers height, body length, and heart girth were measured at 4, 14, 28, 42, and 60 d of age. Blood was sampled from the jugular vein at 14, 42, and 60 d of age after the afternoon feeding for analysis of serum antioxidant capacity and immune function. Feeding YS did not affect dry matter intake, but decreased the feed-to-gain ratio with a quadratic dose effect. Over the whole study period, the average daily gain tended to linearly increase with the increasing YS doses, and it was 6.8% higher in diets supplemented with 9 g/d of YS than in the basal control diet without YS. The YS supplementation linearly decreased fecal score in a dose-dependent manner, and the frequency of diarrhea was significantly decreased as the YS supplementation increased throughout the whole study period. The YS supplementation also linearly decreased maleic dialdehyde concentration in the serum compared with the control group. The activity of catalase tended to linearly and quadratically increase, and that of glutathione peroxidase increased linearly with the increased YS supplementation. Serum concentrations of IgA and IgG increased linearly with the increased YS supplementation, and that of IgG tended to increase quadratically. To the best of our knowledge, this is the first study that demonstrated that feeding YS to young calves could improve growth, feed efficiency, and immunity, and decrease fecal score and diarrhea. The results of this study indicated that feeding YS at 9 g/d may be recommended to benefit dairy calves before weaning.


Subject(s)
Antioxidants , Yucca , Animal Feed/analysis , Animals , Body Weight , Cattle , Diet/veterinary , Dietary Supplements , Female , Immunity , Weaning
2.
J Dairy Sci ; 103(12): 11957-11969, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33041040

ABSTRACT

The objectives of this study were to establish if exposure of pregnant dairy cows to high environmental temperatures and humidity during the first trimester of pregnancy impairs the establishment of the ovarian reserve (total number of healthy follicles and oocytes in ovaries) and fertility in their offspring. Serum anti-Müllerian hormone (AMH) concentrations and number of follicles ≥3 mm (antral follicle count; AFC) were assessed on a random day of the estrous cycle in 310 sixteen-month-old dairy heifers. Based on season of their conception and early fetal life, heifers were separated into 2 groups: summer (mean monthly temperature-humidity index = 69.33 ± 2.6) and winter (temperature-humidity index = 54.91 ± 1.08). The AMH and AFC were lower in summer (419.27 ± 22.81 pg/mL and 9.32 ± 0.42 follicles, respectively) compared with winter heifers (634.91 ± 47.60 pg/mL and 11.84 ± 0.46 follicles, respectively) and were not influenced by farm and age at sampling. Heifers born to dams that were not being milked during gestation had lower AMH and AFC compared with offspring of cows on their first lactation, whereas no difference was detected between offspring of cows on their first and subsequent lactations. Summer and winter heifers had similar age at first service and at first calving, and similar number of services per conception. Regardless of season in early fetal life, heifers were classified into 3 groups based on AMH and AFC (low = 20%, intermediate = 60%, high = 20%). Heifers with the lowest AMH were older at first service compared with herd mates with intermediate AMH, but age at first calving and number of services per conception were similar among AMH categories. No difference was detected in any of the fertility measures among AFC categories. Heifers born to mothers exposed to high environmental temperatures in early gestation had smaller ovarian reserves compared with herd mates conceived in winter, but no association between season of early fetal life and fertility at first conception was established. Season of conception and maternal lactation status affect the size of the ovarian reserve, but not fertility, at first conception in the progeny.


Subject(s)
Anti-Mullerian Hormone/blood , Cattle/physiology , Fertility , Ovarian Reserve , Animals , Environment , Estrous Cycle , Female , Fertilization , Hot Temperature , Humidity , Lactation , Oocytes/physiology , Ovary/physiology , Pregnancy , Seasons
3.
Reproduction ; 157(3): 259-271, 2019 03.
Article in English | MEDLINE | ID: mdl-30608906

ABSTRACT

The aim of this study was to investigate the properties and to functionally characterize the cervical mucus that modulates sperm transport through the cervix by using ewe breeds with a divergent pregnancy rate (Belclare and Suffolk; high and low, respectively) following cervical insemination using frozen-thawed semen. Sperm number, as well as sialic acid and fucose content in both the channels and in the lumen of different regions of the cervix were quantified in inseminated Belclare and Suffolk ewes. Expression of glycosyltransferase and MUC genes, glycosidase activity and sialic acid speciation in follicular phase cervical tissue and mucus were assessed. More spermatozoa were found in the cervical channels in the region closest to the cervical os in Belclare than Suffolk ewes (P < 0.05) and Suffolk ewes had a higher sialic acid content in the cervical channels than Belclare ewes (P < 0.05) in all regions of cervix. Suffolk ewes had significantly higher expression of FUT1, ST6GAL1 and MUC5AC than Belclare ewes. There was no difference between the breeds in glycosidase activity (P > 0.05). Levels of Neu5Ac were higher in Belclare than Suffolk ewes (P < 0.05) and levels of Neu5Gc was higher in Suffolk than Belclare ewes (P < 0.05). Competitive sperm penetration assays demonstrated that frozen-thawed sperm progression increased when cervical mucus was incubated with sialyllactose prior to a sperm penetration test (P < 0.05). These results suggest that the difference between Belclare and Suffolk ewes in sperm transport with frozen-thawed semen is due to the higher concentration of sialic acid within channels, which binds to spermatozoa and reduces their ability to traverse the cervix.


Subject(s)
Cervix Mucus/metabolism , Cervix Uteri/physiology , Cryopreservation/veterinary , Insemination, Artificial/veterinary , N-Acetylneuraminic Acid/metabolism , Sperm Motility , Spermatozoa/physiology , Animals , Female , Fertilization in Vitro/veterinary , Glycoside Hydrolases/metabolism , Glycosyltransferases/metabolism , Male , Mucin-1/metabolism , Pregnancy , Pregnancy Rate , Sheep , Spermatozoa/cytology
4.
Reproduction ; 155(4): 361-371, 2018 04.
Article in English | MEDLINE | ID: mdl-29581386

ABSTRACT

Sialic acid (Sia) is a major constituent of both the sperm glycocalyx and female reproductive mucosal surface and is involved in regulating sperm migration, uterotubal reservoir formation and oocyte binding. Siglecs (sialic acid-binding immunoglobulin - like lectins) commonly found on immune cells, bind to Sia in a linkage- and sugar-specific manner and often mediate cell-to-cell interactions and signalling. Proteomic and transcriptomic analysis of human and bovine sperm have listed Siglecs, but to date, their presence and/or localisation on sperm has not been studied. Therefore, the aim of this study was to characterise the presence of Siglecs on the surface of bovine, human and ovine sperm using both immunostaining and Western blotting. Siglec 1, 2, 5, 6, 10 and 14 were identified and displayed both species- and regional-specific expression on sperm. Almost universal expression across Siglecs and species was evident in the sperm neck and midpiece region while variable expression among Siglecs, similar among species, was detected in the head and tail regions of the sperm. The possible role for these proteins on sperm is discussed.


Subject(s)
Proteomics/methods , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Spermatozoa/metabolism , Animals , Cattle , Humans , Male , Sheep , Species Specificity , Tissue Distribution
5.
Reproduction ; 154(1): R1-R11, 2017 07.
Article in English | MEDLINE | ID: mdl-28356501

ABSTRACT

A reliable, easy to assess marker for fertility in agricultural species would be highly desirable and Anti-Müllerian Hormone (AMH) is a promising candidate. This review summarizes recent findings concerning AMH and its role in fertility management, mainly in cattle. It focuses on (1) alterations in circulating AMH concentrations from birth to puberty and during estrous cycles; (2) correlation of circulating AMH concentrations with ovarian follicle numbers and ovarian reserve; (3) factors that impact circulating AMH concentrations; (4) use of AMH as a predictor of fertility. Circulating AMH concentrations can be easily and reliably measured with a single blood sample in adult cattle because AMH varies minimally during the estrous cycle and is repeatable across multiple cycles. Circulating AMH concentrations are positively associated with several measures of fertility. Dairy heifers with low compared with higher AMH concentrations subsequently had lower pregnancy rates, higher probability of being culled after birth of their first calf and shorter herd longevity. Also, AMH is predictive of response to superovulation in cattle and sheep. Several factors contribute to the variability in AMH concentrations among individuals; for example, beef cattle have higher AMH than dairy cattle. Nutritional imbalances, disease and endocrine disruptors during fetal life may negatively program the size of the ovarian reserve and consequently serum AMH concentrations and potential fertility in adulthood. We conclude that AMH may be a predictor of fertility and herd longevity in cattle, whereas in sheep and other farm species, the potential association between AMH and reproductive performance remains largely unexplored.Free Italian abstract: An Italian translation of this abstract is freely available at http://www.reproduction-online.org/content/154/1/R1/suppl/DC1.


Subject(s)
Anti-Mullerian Hormone/blood , Fertility/physiology , Reproduction/physiology , Animal Culling , Animals , Cattle , Dairying , Estrous Cycle/blood , Female , Longevity/physiology , Pregnancy , Sexual Maturation/physiology , Superovulation/physiology
6.
Reprod Fertil Dev ; 28(1-2): 11-24, 2016.
Article in English | MEDLINE | ID: mdl-27062871

ABSTRACT

To compare gene expression among bovine tissues, large bovine RNA-seq datasets were used, comprising 280 samples from 10 different bovine tissues (uterine endometrium, granulosa cells, theca cells, cervix, embryos, leucocytes, liver, hypothalamus, pituitary, muscle) and generating 260 Gbases of data. Twin approaches were used: an information-theoretic analysis of the existing annotated transcriptome to identify the most tissue-specific genes and a de-novo transcriptome annotation to evaluate general features of the transcription landscape. Expression was detected for 97% of the Ensembl transcriptome with at least one read in one sample and between 28% and 66% at a level of 10 tags per million (TPM) or greater in individual tissues. Over 95% of genes exhibited some level of tissue-specific gene expression. This was mostly due to different levels of expression in different tissues rather than exclusive expression in a single tissue. Less than 1% of annotated genes exhibited a highly restricted tissue-specific expression profile and approximately 2% exhibited classic housekeeping profiles. In conclusion, it is the combined effects of the variable expression of large numbers of genes (73%-93% of the genome) and the specific expression of a small number of genes (<1% of the transcriptome) that contribute to determining the outcome of the function of individual tissues.


Subject(s)
Cervix Uteri/metabolism , Embryo, Mammalian/metabolism , Endometrium/metabolism , Fertility , Gene Expression Regulation, Developmental , Ovarian Follicle/metabolism , Uterus/metabolism , Animals , Cattle , Databases, Nucleic Acid , Female , Gene Expression Profiling/veterinary , Gene Library , Genes, Essential , Molecular Sequence Annotation , Organ Specificity , Pregnancy , Principal Component Analysis , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Transcriptome
7.
Mol Psychiatry ; 19(5): 555-9, 2014 May.
Article in English | MEDLINE | ID: mdl-23732878

ABSTRACT

Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration.


Subject(s)
Aging/pathology , Aging/psychology , Brain/pathology , Intelligence , Adolescent , Adult , Aged , Child , Cognition , Cohort Studies , Cross-Sectional Studies , Female , Humans , Intelligence Tests , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Regression Analysis , Sex Factors , Young Adult
8.
Horm Metab Res ; 47(1): 56-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25350519

ABSTRACT

Early postnatal life is a critical period for development of the endocrine pancreas, involving remodelling of islet cells and maturation of secretory responses. Factors that regulate these processes are undefined. Somatostatin-secreting delta-cells are abundant in the developing pancreas and, because somatostatin inhibits growth, the hormone may regulate islet expansion in early life. The aim of this study was to investigate effects of somatostatin-deficiency on proliferation, apoptosis and pancreas expansion in the first 3 weeks of life in mice. Pancreases from control or somatostatin-knockout mice were analysed for beta cell, alpha cell and pancreatic volumes by morphometry, proliferation by BrdU incorporation and apoptosis by TUNEL labelling. Signalling pathways associated with proliferation and apoptosis were studied by immunohistochemistry and Western blotting. Knockout mice grew normally in the first 3 weeks of life, but had high circulating insulin that normalised by day 21. Beta cell, alpha cell and pancreatic volumes were decreased in knockout mice, accompanied by reduced proliferation and increased apoptosis in the pancreas. Decreased growth was not due to impaired Akt signalling, as Akt phosphorylation and nuclear cyclin-D2 increased in the knockout pancreas. Levels of TGF-ß1, a factor implicated in tissue remodelling, together with SMAD phosphorylation through which TGF-ß mediates its effects, were increased in the knockout pancreas. Beta cell expansion was impaired in knockout mice, potentially compensating for increased insulin secretion from islets lacking inhibitory effects of somatostatin, and was associated with increased TGF-ß1 levels. TGF-ß1 may represent an important regulator of beta cell mass in early life.


Subject(s)
Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Signal Transduction , Somatostatin/deficiency , Transforming Growth Factor beta/metabolism , Animals , Animals, Newborn , Apoptosis , Body Weight , Bromodeoxyuridine/metabolism , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Female , In Situ Nick-End Labeling , Male , Mice , Phosphorylation , Phosphoserine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Smad Proteins/metabolism , Somatostatin/metabolism
9.
J Dairy Sci ; 98(5): 3036-45, 2015 May.
Article in English | MEDLINE | ID: mdl-25726106

ABSTRACT

Reliable biomarkers predictive of productive herd life (time in herd after birth of first calf) have heretofore not been discovered in dairy cattle. However, circulating concentrations of anti-Müllerian hormone (AMH) are positively associated with number of follicles or antral follicle count (AFC), ovarian function, and fertility, and approximately 25% of cows have a relatively low AFC and low AMH concentrations. The present study tested the hypothesis that heifers with the lowest AMH concentrations have suboptimal fertility and are removed from a herd for poor reproductive performance at a greater rate, and therefore have a shorter productive herd life compared with age-matched herdmates with higher AMH. To test this hypothesis, 11- to 15-mo-old Holstein heifers (n=281) were subjected to a single measurement of AMH. All heifers not removed from the herd had the opportunity to complete 2 lactations and start their third lactation after calving. During this time, performance and health parameters for each individual were recorded daily by herd managers. Results showed that the quartile of heifers with the lowest AMH concentration also had, on average, a shorter productive herd life (by 196 d), a reduced survival rate after birth of the first calf, the lowest level of milk production (first lactation), the lowest total percentage of cows pregnant (across all lactations), the highest culling rates (first and second lactations and overall), and the highest culling rate for poor reproduction (first lactation) compared with age-matched herdmates with higher AMH. We concluded that a single determination of AMH concentration in young adult dairy heifers may be a simple diagnostic method to predict herd longevity, and AMH may be a useful phenotypic marker to improve longevity of dairy cows.


Subject(s)
Anti-Mullerian Hormone/blood , Cattle/blood , Cattle/physiology , Animals , Dairying/methods , Female , Fertility/physiology , Lactation/physiology , Longevity , Pregnancy
10.
Physiol Genomics ; 46(19): 735-45, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25096366

ABSTRACT

Development of ovarian follicles is controlled at the molecular level by several gene products whose precise expression leads to regression or ovulation of follicles. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through sequence-specific base pairing with target messenger RNAs (mRNAs) causing translation repression or mRNA degradation. The aim of this study was to identify miRNAs expressed in theca and/or granulosa layers and their putative target genes/pathways that are involved in bovine ovarian follicle development. By using miRCURY microarray (Exiqon) we identified 14 and 49 differentially expressed miRNAs (P < 0.01) between dominant and subordinate follicles in theca and granulosa cells, respectively. The expression levels of four selected miRNAs were confirmed by qRT-PCR. To identify target prediction and pathways of differentially expressed miRNAs we used Union of Genes option in DIANA miRPath v.2.0 software. The predicted targets for these miRNAs were enriched for pathways involving oocyte meiosis, Wnt, TGF-beta, ErbB, insulin, P13K-Akt, and MAPK signaling pathways. This study identified differentially expressed miRNAs in the theca and granulosa cells of dominant and subordinate follicles and implicates them in having important roles in regulating known molecular pathways that determine the fate of ovarian follicle development.


Subject(s)
Cattle/physiology , Gene Expression Regulation, Developmental/physiology , MicroRNAs/metabolism , Ovarian Follicle/growth & development , Signal Transduction/physiology , Animals , DNA Primers/genetics , Female , Gene Expression Regulation, Developmental/genetics , Granulosa Cells/metabolism , MicroRNAs/genetics , Microarray Analysis , Models, Biological , Ovarian Follicle/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Theca Cells/metabolism
11.
Neuroimage ; 99: 525-32, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24936682

ABSTRACT

The last two decades have seen an unprecedented development of human brain mapping approaches at various spatial and temporal scales. Together, these have provided a large fundus of information on many different aspects of the human brain including micro- and macrostructural segregation, regional specialization of function, connectivity, and temporal dynamics. Atlases are central in order to integrate such diverse information in a topographically meaningful way. It is noteworthy, that the brain mapping field has been developed along several major lines such as structure vs. function, postmortem vs. in vivo, individual features of the brain vs. population-based aspects, or slow vs. fast dynamics. In order to understand human brain organization, however, it seems inevitable that these different lines are integrated and combined into a multimodal human brain model. To this aim, we held a workshop to determine the constraints of a multi-modal human brain model that are needed to enable (i) an integration of different spatial and temporal scales and data modalities into a common reference system, and (ii) efficient data exchange and analysis. As detailed in this report, to arrive at fully interoperable atlases of the human brain will still require much work at the frontiers of data acquisition, analysis, and representation. Among them, the latter may provide the most challenging task, in particular when it comes to representing features of vastly different scales of space, time and abstraction. The potential benefits of such endeavor, however, clearly outweigh the problems, as only such kind of multi-modal human brain atlas may provide a starting point from which the complex relationships between structure, function, and connectivity may be explored.


Subject(s)
Atlases as Topic , Brain/anatomy & histology , Brain Mapping , Humans
12.
Reproduction ; 148(6): 569-80, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25212784

ABSTRACT

Follicular fluid (FF), an important microenvironment for the development of oocytes, contains many proteins that are glycosylated with N-linked glycans. This study aimed i) to present an initial analysis of the N-linked glycan profile of bovine FF using hydrophilic interaction liquid chromatography, anion exchange chromatography, high performance liquid chromatography (HPLC)-based separations and subsequent liquid chromatography-mass spectrometry/mass spectrometry analysis; ii) to determine differences in the N-glycan profile between FF from dominant and subordinate follicles from dairy heifers and lactating dairy cows and iii) to identify alterations in the N-glycan profile of FF during preovulatory follicle development using newly selected, differentiated (preovulatory) and luteinised dominant follicles from dairy heifers and lactating cows. We found that the majority of glycans on bovine FF are based on biantennary hypersialylated structures, where the glycans are sialylated on both the galactose and N-acetylglucosamine terminal sugars. A comparison of FF N-glycans from cows and heifers indicated higher levels of nonsialylated glycans with a lower proportion of sialylated glycans in cows than in heifers. Overall, as the follicle develops from Selection, Differentiation and Luteinisation in both cows and heifers, there is an overall decrease in sialylated structures on FF N-glycans.


Subject(s)
Cattle/metabolism , Follicular Fluid/metabolism , Follicular Phase/metabolism , Ovarian Follicle/growth & development , Polysaccharides/metabolism , Aging/metabolism , Animals , Female , Follicular Fluid/chemistry , Lactation/metabolism , Ovarian Follicle/metabolism , Ovulation/metabolism , Polysaccharides/analysis
13.
Diabetes Obes Metab ; 16(10): 947-56, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24720683

ABSTRACT

AIMS: Islets are innervated by parasympathetic nerves which release acetylcholine (ACh) to amplify glucose-induced insulin secretion, primarily via muscarinic M3 receptors (M3R). Here we investigate the consequence of chronic hyperglycaemia on islet M3R expression and secretory sensitivity of mouse islets to cholinergic receptor activation. METHODS: The impact of hyperglycaemia was studied in (i) islets isolated from ob/ob mice, (ii) alginate-encapsulated mouse islets transplanted intraperitoneally into streptozotocin-induced diabetic mice and (iii) mouse and human islets maintained in vitro at 5.5 or 16 mmol/l glucose. Blood glucose levels were assessed by a commercial glucose meter, insulin content by RIA and M3R expression by qPCR and immunohistochemistry. RESULTS: M3R mRNA expression was reduced in both ob/ob islets and islets maintained at 16 mmol/l glucose for 3 days (68 and 50% control, respectively). In all three models of hyperglycaemia the secretory sensitivity to the cholinergic receptor agonist, carbachol, was reduced by 60-70% compared to control islets. Treatment for 72 h with the irreversible PKC activator, PMA, or the PKC inhibitor, Gö6983, did not alter islet M3R mRNA expression nor did incubation with the PI3K-inhibitor, LY294002, although enhancement of glucose-induced insulin secretion by LY294002 was reduced in islets maintained at 16 mmol/l glucose, as was mRNA expression of the PI3K regulatory subunit, p85α. CONCLUSIONS: Cholinergic regulation of insulin release is impaired in three experimental islet models of hyperglycaemia consistent with reduced expression of M3 receptors. Our data suggest that the receptor downregulation is a PKC- and PI3K-independent consequence of the hyperglycaemic environment, and they imply that M3 receptors could be potential targets in the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Hyperglycemia/metabolism , Islets of Langerhans/metabolism , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M3/agonists , Animals , Glucose/metabolism , Insulin/metabolism , Insulin Secretion , Male , Mice , Mice, Obese , Phosphatidylinositol 3-Kinases/metabolism
14.
Cereb Cortex ; 23(12): 2932-43, 2013 Dec.
Article in English | MEDLINE | ID: mdl-22977063

ABSTRACT

Neurologic impairment is a major complication of complex congenital heart disease (CHD). A growing body of evidence suggests that neurologic dysfunction may be present in a significant proportion of this high-risk population in the early newborn period prior to surgical interventions. We recently provided the first evidence that brain growth impairment in fetuses with complex CHD has its origins in utero. Here, we extend these observations by characterizing global and regional brain development in fetuses with hypoplastic left heart syndrome (HLHS), one of the most severe forms of CHD. Using advanced magnetic resonance imaging techniques, we compared in vivo brain growth in 18 fetuses with HLHS and 30 control fetuses from 25.4-37.0 weeks of gestation. Our findings demonstrate a progressive third trimester fall-off in cortical gray and white matter volumes (P < 0.001), and subcortical gray matter (P < 0.05) in fetuses with HLHS. Significant delays in cortical gyrification were also evident in HLHS fetuses (P < 0.001). In the HLHS fetus, local cortical folding delays were detected as early as 25 weeks in the frontal, parietal, calcarine, temporal, and collateral regions and appear to precede volumetric brain growth disturbances, which may be an early marker of elevated risk for third trimester brain growth failure.


Subject(s)
Cerebral Cortex/abnormalities , Fetus/abnormalities , Hypoplastic Left Heart Syndrome/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Pregnancy
15.
Reprod Fertil Dev ; 26(2): 328-36, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23439105

ABSTRACT

The aim of the present study was to investigate the effect of short-term progesterone (P4) supplementation during the early metoestrous period on circulating P4 concentrations and conceptus development in cattle. The oestrous cycles of cross-bred beef heifers were synchronised using a 7-day P4-releasing intravaginal device (PRID® Delta; 1.55 g P4) treatment with administration of a prostaglandin F(2α) analogue (Enzaprost; CEVA Sante Animale) the day before PRID® Delta removal. Only those heifers recorded in standing oestrus (Day 0) were used. In Experiment 1, heifers were randomly assigned to one of five groups: (1) control: no treatment; (2) placebo: insertion of a blank device (no P4) from Day 3 to Day 7; (3) insertion of a PRID® Delta from Day 3 to Day 7; (4) insertion of a PRID® Delta from Day 3 to Day 5; or (5) insertion of a PRID® Delta from Day 5 to Day 7. In vitro-produced blastocysts were transferred to each heifer in Groups 2-5 on Day 7 (n=10 blastocysts per heifer) and conceptuses were recovered when heifers were killed on Day 14. Based on the outcome of Experiment 1, in Experiment 2 heifers were artificially inseminated at oestrus and randomly assigned to one of three treatment groups: (1) placebo; (2) PRID from Day 3 to Day 5; or (3) PRID from Day 3 to Day 7. All heifers were killed on Day 16 and recovered conceptuses were incubated in synthetic oviducal fluid medium for 24 h; spent media and uterine flushes were analysed for interferon-τ (IFNT). In both experiments, daily blood samples were taken to determined serum P4 concentrations. Data were analysed using the PROC MIXED procedure of SAS (SAS Institute, Cary, NC, USA). Insertion of a PRID resulted in an increase (P<0.05) in serum P4 that declined following removal. In Experiment 1, P4 supplementation from Day 3 to Day 5 (17.0±1.4 mm) or Day 3 to Day 7 (11.3±2.3 mm) increased conceptus length compared with placebo (2.1±1.8 mm). Serum P4 was significantly lower from Day 9 to Day 14 (P<0.05) and the weight of the Day 14 corpus luteum (CL) was lower in the PRID Day 3-7 group than the placebo or control groups. In Experiment 2, supplementation from Day 3 to Day 5 (94.0±18.8 mm) or Day 3 to Day 7 (143.6±20.6 mm) increased conceptus length on Day 16 compared with placebo (50.3±17.4 mm). Serum P4 was significantly lower in the two supplemented groups following PRID removal compared with placebo (P<0.05) and was associated with a lower CL weight in the Day 3-7 group. Conceptus length was strongly correlated with the IFNT concentration in the uterine flush (r=0.58; P=0.011) and spent culture medium (r=0.68; P<0.002). The findings of the present study highlight the somewhat paradoxical effects of P4 supplementation when given in the early metoestrous period in terms of its positive effect on conceptus development and its potentially negative effects on CL lifespan.


Subject(s)
Corpus Luteum/drug effects , Embryo Implantation/drug effects , Fertility Agents, Female/administration & dosage , Fertility/drug effects , Progesterone/administration & dosage , Reproductive Techniques, Assisted/veterinary , Administration, Intravaginal , Animals , Blastocyst/drug effects , Blastocyst/physiology , Cattle , Corpus Luteum/physiology , Drug Administration Schedule , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Embryonic Development/drug effects , Estrous Cycle/drug effects , Estrous Cycle/physiology , Female , Fertility Agents, Female/blood , Fertilization in Vitro/veterinary , Insemination, Artificial/veterinary , Pregnancy , Progesterone/blood , Time Factors
16.
J Dairy Sci ; 97(6): 3542-57, 2014.
Article in English | MEDLINE | ID: mdl-24657084

ABSTRACT

The aim was to assess the ability of corpus luteum (CL) and uterine ultrasound characteristics on d 18 to 21 to predict pregnancy status in lactating dairy cows. Ultrasound examinations were carried out on cows (n = 164) on d 18 to 21 following artificial insemination (AI). Images of the uterus and CL were captured using a Voluson i ultrasound device (General Electric Healthcare Systems, Vienna, Austria) equipped with a 12-MHz, multi frequency, linear array probe. Serum concentrations of progesterone were determined from blood samples collected at each ultrasound examination. Images of the CL were captured and stored for calculation of CL tissue area and echotexture. Images of the CL and associated blood flow area were captured and stored for analysis of luteal blood flow ratio. Longitudinal B-mode images of the uterine horns were stored for analysis of echotexture. Diagnosis of pregnancy was made at each ultrasound examination based on CL blood flow, CL size, and uterine echotexture. Pregnancy was confirmed by ultrasonography on d 30 after AI. The relationship between ultrasound measures and pregnancy outcome, as well as the accuracy of the pregnancy diagnosis made at each ultrasound examination was assessed. Progesterone concentrations and CL tissue area were greater in pregnant compared with nonpregnant cows on all days. The CL blood flow ratio was higher in pregnant compared with nonpregnant cows on d 20 and 21 after AI. Echotexture measures of the CL and uterus were not different between pregnant and nonpregnant cows on any day of examination. The best logistic regression model to predict pregnancy included scores for CL blood flow, CL size, and uterine echotexture on d 21 following AI. Accuracy of pregnancy diagnosis was highest on d 21, with sensitivity and specificity being 97.6 and 97.5%, respectively. Uterine echotexture scores were similar for pregnant and nonpregnant cows from d 18 to 20. On d 21, pregnant cows had higher uterine echotexture scores compared with nonpregnant cows. The logistic regression equation most likely to provide a correct pregnancy diagnosis in lactating dairy cows included the visual score for CL blood flow, CL size, and uterine echotexture on d 21 after AI. In support of this finding, the diagnostic accuracy for visual scores of CL blood flow, CL size, and uterine echotexture were also highest on d 21.


Subject(s)
Insemination, Artificial/veterinary , Lactation , Pregnancy, Animal , Animals , Austria , Cattle , Corpus Luteum/diagnostic imaging , Female , Image Processing, Computer-Assisted , Logistic Models , Pregnancy , Progesterone/blood , Ultrasonography , Uterus/diagnostic imaging
17.
J Dairy Sci ; 97(7): 4503-11, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24835969

ABSTRACT

Previous studies have documented that ovarian antral follicle count (AFC) is positively correlated with number of healthy follicles and oocytes in ovaries (ovarian reserve), as well as ovarian function and fertility in cattle. However, environmental factors (e.g., nutrition, steroids) during pregnancy in cattle and sheep can reduce AFC in offspring. The role that genetic and environmental factors play in influencing the variability in AFC and, correspondingly, the size of the ovarian reserve, ovarian function, and fertility, are, however, poorly understood. The present study tests the hypothesis that variability in AFC in offspring is influenced not only by genetic merit but also by the dam age and lactation status (lactating cows vs. nonlactating heifers) and milk production during pregnancy. Antral follicle count was assessed by ultrasonography in 445 Irish Holstein-Friesian dairy cows and 522 US Holstein-Friesian dairy heifers. Heritability estimates for AFC (± standard error) were 0.31 ± 0.14 and 0.25 ± 0.13 in dairy cows and heifers, respectively. Association analysis between both genotypic sire data and phenotypic dam data with AFC in their daughters was performed using regression and generalized linear models. Antral follicle count was negatively associated with genetic merit for milk fat concentration. Also, AFC was greater in offspring of dams that were lactating (n=255) compared with nonlactating dams (n=89) during pregnancy and was positively associated with dam milk fat concentration and milk fat-to-protein ratio. In conclusion, AFC in dairy cattle is a moderately heritable genetic trait affected by age or lactation status and milk quality but not by level of dam's milk production during pregnancy.


Subject(s)
Cattle/genetics , Environment , Ovarian Follicle/metabolism , Animals , Diet/veterinary , Female , Fertility/genetics , Ireland , Lactation , Milk/metabolism , Oocytes/metabolism , Ovarian Follicle/cytology , Phenotype , Pregnancy , United States
18.
Top Curr Chem ; 341: 271-99, 2013.
Article in English | MEDLINE | ID: mdl-23839281

ABSTRACT

All biopolymers are composed of homochiral building blocks, and both D-sugars and L-amino acids uniquely constitute life on Earth. These monomers were originally enantiomerically differentiated under prebiotic conditions. Particular progress has recently been made in support of the photochemical model for this differentiation: the interaction of circularly polarized light with racemic molecules is currently thought to have been the original source for life's biological homochirality. The differential asymmetric photoreactivity of particular small molecules can be characterized by both circular dichroism and anisotropy spectroscopy. Anisotropy spectroscopy, a novel derivative of circular dichroism spectroscopy, records the anisotropy factor g = Δε/ε as a function of the wavelength. Anisotropy spectroscopy promisingly affords the wavelength-dependent determination of the enantiomeric excess (ee) inducible into chiral organic molecules by photochemical irradiation with circularly polarized light. Anisotropy spectra of small molecules therefore provide unique means for characterizing the different photochemical behaviors between enantiomers upon exposure to various wavelengths of circularly polarized light. This chapter will: (1) present the theory and configuration of anisotropy spectroscopy; (2) explain experimentally recorded anisotropy spectra of selected chiral biomolecules such as amino acids; and (3) discuss the relevance of these spectra for the investigation of the origin of the molecular homochirality observed in living organisms. This review describes a new chiroptical technique that is of significance for advances in asymmetric photochemistry and that is also highly relevant for the European Space Agency Rosetta Mission, which will determine enantiomeric excesses (ees) in chiral organic molecules in cometary ices when it lands on Comet 67P/Churyumov-Gerasimenko in November 2014.


Subject(s)
Biopolymers/chemistry , Spectrophotometry, Ultraviolet/methods , Stereoisomerism , Amino Acids/chemistry , Circular Dichroism
19.
Animal ; 17 Suppl 1: 100744, 2023 May.
Article in English | MEDLINE | ID: mdl-37567673

ABSTRACT

Ruminants are born with a finite number of healthy ovarian follicles and oocytes (ovarian reserve) and germ cell proliferation in the developing foetal gonad predominantly occurs during early gestation. Two markers have been established to reliably estimate the size of the ovarian reserve in cattle: the number of antral follicles ≤3 mm in diameter recruited per follicular wave (Antral Follicle Count, AFC) and peripheral concentrations of the Anti-Müllerian hormone (AMH). Studies that used one or both indicators show that the size of ovarian reserve varies greatly among age-matched individuals, but is highly repeatable in the same animal. Conditions during prenatal life are likely among the causes of such variation in the ovarian reserve. In addition, the size of the ovarian reserve is a moderately heritable trait in cattle. The association between ovarian reserve and fertility is controversial. Several studies indicate that cattle with a low ovarian reserve have phenotypic characteristics that are associated with suboptimal fertility. On the contrary, the presence and absence of a positive association between AFC and/or AMH and fertility measures (i.e. no. on services/conception, pregnancy rates, pregnancy loss) have been equally reported in cattle. In conclusion, the size of the ovarian reserve in the progeny can be enhanced by improving management of the dam from preconception to early gestation and also through genetic selection. However, although the ovarian reserve may be among the determinants of reproductive success in ruminants, the use of AFC/AMH as reliable predictors of fertility is yet to be established. Furthermore, the possibility that there is a complex interaction of AFC, AMH and reproduction has yet to be fully characterised and exploited to improve fertility in cattle.


Subject(s)
Ovarian Reserve , Pregnancy , Female , Cattle , Animals , Fertility , Ovarian Follicle , Reproduction , Ruminants
20.
Diabetologia ; 55(7): 1995-2004, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22526610

ABSTRACT

AIMS/HYPOTHESIS: Somatostatin from islet delta cells inhibits insulin and glucagon secretion, but knowledge of the regulation of pancreatic somatostatin release is limited. Some insulin secretagogues stimulate somatostatin secretion, and here we investigated whether delta cell secretory responses are indirectly regulated in a paracrine manner by insulin released from beta cells. METHODS: Hormone release from static incubations of primary mouse islets or somatostatin-secreting TGP52 cells was measured by RIA. mRNA expression was assessed by RT-PCR. RESULTS: Glucose and a range of other physiological and pharmacological agents stimulated insulin and somatostatin release, and insulin receptor mRNA was expressed in islets, MIN6 beta cells and TGP52 cells. However, exogenous insulin did not modulate basal or glucose-induced somatostatin secretion from islets, nor did pre-incubation with an antibody against the insulin receptor or with the insulin receptor tyrosine kinase inhibitor, HNMPA(AM)(3). Glucose and tolbutamide stimulated somatostatin release from TGP52 cells, whereas a range of receptor-operating agents had no effect, the latter being consistent with a lack of corresponding receptor mRNA expression in these cells. Parasympathetic activation stimulated insulin, but inhibited somatostatin release from mouse islets in accordance with differences in muscarinic receptor mRNA expression in islets, MIN6 and TGP52 cells. The inhibitory effect on somatostatin secretion was reversed by pertussis toxin or the muscarinic receptor 2 antagonist, methoctramine. CONCLUSIONS/INTERPRETATIONS: A number of insulin secretagogues have analogous effects on insulin and somatostatin release, but this similarity of response is not mediated by an indirect, paracrine action of insulin on delta cells.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Receptor, Insulin/metabolism , Somatostatin-Secreting Cells/metabolism , Animals , Apoptosis , Cell Line , Insulin/pharmacology , Insulin Secretion , Male , Mice , Mice, Inbred ICR , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL