Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Am Chem Soc ; 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39401126

ABSTRACT

Below its Jahn-Teller transition temperature, TJT, NaNiO2 has a monoclinic layered structure consisting of alternating layers of edge-sharing NaO6 and Jahn-Teller-distorted NiO6 octahedra. Above TJT where NaNiO2 is rhombohedral, diffraction measurements show the absence of a cooperative Jahn-Teller distortion, accompanied by an increase in the unit cell volume. Using neutron total scattering, solid-state Nuclear Magnetic Resonance (NMR), and extended X-ray absorption fine structure (EXAFS) experiments as local probes of the structure we find direct evidence for a displacive, as opposed to order-disorder, Jahn-Teller transition at TJT. This is supported by ab initio molecular dynamics (AIMD) simulations. To our knowledge this study is the first to show a displacive Jahn-Teller transition in any material using direct observations with local probe techniques.

2.
J Am Chem Soc ; 144(1): 615-624, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34967601

ABSTRACT

Functional oxides showing high ionic conductivity have many important technological applications. We report oxide ion and proton conductivity in a family of perovskite-related compounds of the general formula A3OhTd2O7.5, where Oh is an octahedrally coordinated metal ion and Td is a tetrahedrally coordinated metal ion. The high tetrahedral content in these ABO2.5 compositions relative to that in the perovskite ABO3 or brownmillerite A2B2O5 structures leads to tetrahedra with only three of their four vertices connected in the polyhedral framework, imparting a potential low-energy mechanism for O2- migration. The low- and high-temperature average and local structures of Ba3YGa2O7 (P2/c, a = 7.94820(5) Å, b = 5.96986(4) Å, c = 18.4641(1) Å, and ß = 91.2927(5) ° at 22 °C) were determined by Rietveld and neutron pair distribution function (PDF) analysis, and a phase transition to a high-temperature P1121/a structure (a = 12.0602(1) Å, b = 9.8282(2) Å, c = 8.04982(6) Å, and γ = 107.844(3)° at 1000 °C) involving the migration of O2- ions was identified. Ionic conductivities of Ba3YGa2O7.5 and compositions substituted to introduce additional oxide vacancies and interstitials are reported. Most phases show proton conductivity at lower temperatures and oxide ion conductivity at high temperatures, with Ba3YGa2O7.5 retaining proton conductivity at high temperatures. Ba2.9La0.1YGa2O7.55 and Ba3YGa1.9Ti0.1O7.55 appear to be dominant oxide ion conductors, with conductivities an order of magnitude higher than that of the parent compound.

3.
J Phys Chem A ; 124(24): 5015-5022, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32441526

ABSTRACT

Carbon and ice make up a substantial proportion of our universe. Recent space exploration has shown that these two chemical species often coexist such as on comets and asteroids and in the interstellar medium. Here, we prepare mixtures of C60 fullerene and H2O by vapor codeposition at 90 K with molar C60/H2O ratios ranging from 1:1254 to 1:5. The C60 percolation threshold is found between the 1:132 and 1:48 samples, corresponding to a transition from matrix-isolated C60 molecules to percolating C60 domains that confine H2O. Below this threshold, the crystallization and thermal desorption properties of H2O are not significantly affected by C60, whereas the crystallization temperature of H2O is shifted toward higher temperatures for the C60-rich samples. These C60-rich samples also display exotherms corresponding to the crystallization of C60 as the two components undergo phase separation. More than 60 vol % C60 is required to significantly affect the desorption properties of H2O. A thick blanket of C60 on top of pure amorphous ice is found to display large cracks due to water desorption. These findings may help us to understand the recently observed unusual surface features and the H2O weather cycle on the 67P/Churyumov-Gerasimenko comet.

4.
Inorg Chem ; 58(21): 14853-14862, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31617356

ABSTRACT

Materials with the apatite structure have a range of important applications in which their function is influenced by details of their local structure. Here, we describe an average and local structural study to probe the origins of high-temperature oxide ion mobility in La10(GeO4)6O3 and La8Bi2(GeO4)6O3 oxygen-excess materials, using the low-conductivity interstitial oxide-free La8Sr2(GeO4)6O2 as a benchmark. For La10 and La8Bi2, we locate the interstitial oxygen, Oint, responsible for conductivity by Rietveld refinement and relate the P63/m to P1̅ phase transitions on cooling to oxygen ordering. Local structural studies using neutron total scattering reveal that well-ordered GeO5 square pyramidal groups form in the structure at low temperature, but that Oint becomes significantly more disordered in the high-conductivity, high-temperature structures, with a transition to more trigonal-bipyramid-like average geometry. We relate the higher conductivity of Bi materials to the presence of several Oint sites of similar energy in the structure, which correlates with its less-distorted low-temperature average structure.

5.
J Am Chem Soc ; 140(41): 13441-13448, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30230830

ABSTRACT

The exploitable properties of many functional materials are intimately linked with symmetry-changing phase transitions. These include properties such as ferroelectricity, second harmonic generation, conductivity, magnetism and many others. We describe a new symmetry-inspired method for systematic and exhaustive evaluation of the symmetry changes possible in molecular systems using molecular distortion modes, and how different models can be automatically tested against diffraction data. The method produces a quantitative structural landscape from which the most appropriate structural description of a child phase can be chosen. It can be applied to any molecular or molecular-fragment containing material where a (semi) rigid molecule description is appropriate. We exemplify the method on 5,6-dichloro-2-methylbenzimidazole (DC-MBI), an important molecular ferroelectric. We show that DC-MBI undergoes an unusual symmetry-lowering transition on warming from orthorhombic Pca21 ( T ≲ 400 K) to monoclinic Pc. Contrary to expectations, the high temperature phase of DC-MBI remains polar.

6.
J Am Chem Soc ; 138(25): 8031-42, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27248317

ABSTRACT

The exploitable properties of many materials are intimately linked to symmetry-lowering structural phase transitions. We present an automated and exhaustive symmetry-mode method for systematically exploring and solving such structures which will be widely applicable to a range of functional materials. We exemplify the method with an investigation of the Bi2Sn2O7 pyrochlore, which has been shown to undergo transitions from a parent γ cubic phase to ß and α structures on cooling. The results include the first reliable structural model for ß-Bi2Sn2O7 (orthorhombic Aba2, a = 7.571833(8), b = 21.41262(2), and c = 15.132459(14) Å) and a much simpler description of α-Bi2Sn2O7 (monoclinic Cc, a = 13.15493(6), b = 7.54118(4), and c = 15.07672(7) Å, ß = 125.0120(3)°) than has been presented previously. We use the symmetry-mode basis to describe the phase transition in terms of coupled rotations of the Bi2O' anti-cristobalite framework, which allow Bi atoms to adopt low-symmetry coordination environments favored by lone-pair cations.

7.
Inorg Chem ; 54(4): 1563-71, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25584771

ABSTRACT

The quaternary transition metal oxyselenide Ce2O2ZnSe2 has been shown to adopt a ZrCuSiAs-related structure with Zn(2+) cations in a new ordered arrangement within [ZnSe2](2-) layers. The color of the compound changes as a function of cell volume, which can vary by ∼0.4% under different synthetic conditions. At the highest, intermediate, and lowest cell volumes, the color is yellow-ochre, brown, and black, respectively. The decreased volume is attributed to oxidation of Ce from 3+ to 4+, the extent of which can be controlled by synthetic conditions. Ce2O2ZnSe2 is a semiconductor at all cell volumes with experimental optical band gaps of 2.2, 1.4, and 1.3 eV for high, intermediate, and low cell volume samples, respectively. SQUID measurements show Ce2O2ZnSe2 to be paramagnetic from 2 to 300 K with a negative Weiss temperature of θ = -10 K, suggesting weak antiferromagnetic interactions.

8.
Inorg Chem ; 54(15): 7230-8, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-25924673

ABSTRACT

A number of Ln2O2MSe2 (Ln = La and Ce; M = Fe, Zn, Mn, and Cd) compounds, built from alternating layers of fluorite-like [Ln2O2](2+) sheets and antifluorite-like [MSe2](2-) sheets, have recently been reported in the literatures. The available MSe4/2 tetrahedral sites are half-occupied, and different compositions display different ordering patterns: [MSe2](2-) layers contain MSe4/2 tetrahedra that are exclusively edge-sharing (stripe-like), exclusively corner-sharing (checkerboard-like), or mixtures of both. This paper reports 60 new compositions in this family. We reveal that the transition-metal arrangement can be systematically controlled by either Ln or M doping, leading to an "infinitely adaptive" structural family. We show how this is achieved in La2O2Fe1-xZnxSe2, La2O2Zn1-xMnxSe2, La2O2Mn1-xCdxSe2, Ce2O2Fe1-xZnxSe2, Ce2O2Zn1-xMnxSe2, Ce2O2Mn1-xCdxSe2, La2-yCeyO2FeSe2, La2-yCeyO2ZnSe2, La2-yCeyO2MnSe2, and La2-yCeyO2CdSe2 solid solutions.

9.
Chem Mater ; 36(11): 5796-5804, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38883430

ABSTRACT

We use a combination of X-ray pair distribution function (PDF) measurements, lattice dynamical calculations, and ab initio density functional theory (DFT) calculations to study the local structure and dynamics in various MPt(CN)6 Prussian blue analogues. In order to link directly the local distortions captured by the PDF with the lattice dynamics of this family, we develop and apply a new "interaction-space" PDF refinement approach. This approach yields effective harmonic force constants, from which the (experiment-derived) low-energy phonon dispersion relations can be approximated. Calculation of the corresponding Grüneisen parameters allows us to identify the key modes responsible for negative thermal expansion (NTE) as arising from correlated tilts of coordination octahedra. We compare our results against the phonon dispersion relations determined using DFT calculations, which identify the same NTE mechanism.

10.
J Am Chem Soc ; 135(34): 12849-56, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23895493

ABSTRACT

We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 < x < 1), whose isotropic thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material.

11.
Inorg Chem ; 52(4): 2078-85, 2013 Feb 18.
Article in English | MEDLINE | ID: mdl-23350805

ABSTRACT

The quaternary transition metal oxyselenide La(2)O(2)ZnSe(2) has been shown to adopt a ZrCuSiAs-related structure with Zn(2+) cations in a new ordered arrangement within the [ZnSe(2)](2-) layers. This cation-ordered structure can be derived and described using the symmetry-adapted distortion mode approach. La(2)O(2)ZnSe(2) is an direct gap semiconductor with an experimental optical band gap of 3.4(2) eV, consistent with electronic structure calculations.

12.
Cryst Growth Des ; 23(4): 2860-2869, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37038399

ABSTRACT

The materials property of ferroelectricity is intimately linked with symmetry-changing phase transitions. Characterizing such transitions is therefore essential for understanding molecular ferroelectrics. In this paper, we explore the temperature and thermal history dependence of polymorphic phase transitions in the multiaxial molecular ferroelectric 18-crown-6 oxonium tetrachloro-gallium(III). We have solved the structures of two previously suggested polymorphs (D and Y) ab initio from high-temperature powder diffraction data. We also report the structure of a new polymorph (X) using low-temperature powder diffraction data and identify a fifth (W) that can form on cooling. These polymorphs can be related using two distinct group-subgroup trees. Structure types A-C observed in this and related compounds can be derived from high-temperature polymorph D by group-subgroup relationships. The X and Y polymorphs can be described as child structures of a hypothetical polymorph Z using a molecular rotational distortion mode description. The ferroelectric properties of the various polymorphs can be rationalized based on our structural findings.

13.
Chem Mater ; 34(7): 3185-3196, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35557987

ABSTRACT

We report the synthesis, structural characterization, and oxide ion and proton conductivities of the perovskite-related Ba3-x Sr x YGa2O7.5 family. Single-phase samples are prepared for 0 ≤ x ≤ 3 and show a complex structural evolution from P2/c to C2 space groups with an increase in x. For 1.0 ≲ x ≲ 2.4, average structures determined by X-ray and neutron powder diffraction show metrically orthorhombic unit cells, but HAADF-STEM imaging reveals this is caused by microstructural effects due to intergrowths of the Ba- and Sr-rich structure types. Variable-temperature powder diffraction studies suggest that 0 ≲ x ≲ 2.4 compositions undergo a phase transition upon being heated to space group Cmcm that involves disordering of the oxygen substructure. Thermal expansion coefficients are reported for the series. Complex impedance studies show that the Ba-rich samples are mixed proton and oxide ion conductors under moist atmospheres but are predominantly oxide ion conductors at high temperatures or under dry atmospheres. Sr-rich samples show significantly less water uptake and appear to be predominantly oxide ion conductors under the conditions studied.

14.
Chemistry ; 17(52): 14942-51, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22114013

ABSTRACT

Deuterated 3,5-pyridinedicarboxylic acid exhibits reversible temperature-induced deuteron migration of a magnitude unprecedented in this class of compounds. We used a combination of variable-temperature powder and single-crystal neutron diffraction and density functional theory (DFT)-based computational methods to elucidate the origin of this remarkable behaviour. Single-crystal neutron diffraction shows that between 15 and 300 K, the deuteron moves by 0.32(1) Å and the structure changes from a low-temperature N-D···O form to a high-temperature N···D-O form. Variable-temperature powder neutron-diffraction data, which was fitted by using parametric Rietveld refinement, show that this deuteron migration is due to an isosymmetric, first-order phase transition that occurs by growth of the daughter phase in the parent-phase matrix. Similar phase transitions are observed in two selectively deuterated forms of the material. DFT calculations demonstrate the role of phonons and show that vibrational free-energy stabilisation, which plays a key role in the observed structural phase transitions, is more pronounced in the fully deuterated material and proportional to the mass of the molecule, that is, the level of deuteration. This is consistent with our experimental work, for which distinct crystallographic phase transitions were clearly observed for the three deuterated systems, but not for the fully protonated material.

15.
Inorg Chem ; 49(5): 2290-301, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20131830

ABSTRACT

We report structural investigations into (MoO(2))(2)P(2)O(7) using a combination of X-ray, neutron and electron diffraction, and solid-state NMR supported by first principles quantum chemical calculations. These reveal a series of phase transitions on cooling at temperatures of 377 and 325 K. The high temperature gamma-phase has connectivity consistent with that proposed by Kierkegaard at room temperature (but with improved bond length distribution), and contains 13 unique atoms in space group Pnma with lattice parameters a = 12.6577(1) A, b = 6.3095(1) A, c = 10.4161(1) A, and volume 831.87(1) A(3) from synchrotron data at 423 K. The low temperature alpha-structure was indexed from electron diffraction data and contains 60 unique atoms in space group P2(1)/c with cell parameters a = 17.8161(3) A, b = 10.3672(1) A, c = 17.8089(3) A, beta = 90.2009(2) degrees, and volume 3289.34(7) A(3) at 250 K. First principles calculations of (31)P chemical shift and J couplings were used to establish correlation between local structure and observed NMR parameters, and 1D and 2D (31)P solid-state NMR used to validate the proposed crystal structures. The intermediate beta-phase is believed to adopt an incommensurately modulated structure; (31)P NMR suggests a smooth structural evolution in this region.

16.
Chem Sci ; 11(30): 7904-7909, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-34909139

ABSTRACT

Accurately modelling polymorphism in crystalline solids remains a key challenge in computational chemistry. In this work, we apply a theoretically-rigorous phonon mode-mapping approach to understand the polymorphism in the ternary metal oxide Bi2Sn2O7. Starting from the high-temperature cubic pyrochlore aristotype, we systematically explore the structural potential-energy surface and recover the two known low-temperature phases alongside three new metastable phases, together with the transition pathways connecting them. This first-principles lattice-dynamics method is completely general and provides a practical means to identify and characterise the stable polymorphs and phase transitions in materials with complex crystal structures.

17.
J Am Chem Soc ; 131(48): 17560-2, 2009 Dec 09.
Article in English | MEDLINE | ID: mdl-19911819

ABSTRACT

There has been a considerable amount of interest in negative thermal expansion (NTE) phases which are of importance, for example, in the manufacture of low or zero expansion composite materials. Cubic gamma-ZrMo(2)O(8) is of importance since it shows smooth NTE (alpha = -8 x 10(-6) K(-1) at 100 K) over a wide temperature range with no significant discontinuities as a function of temperature. The material has long been thought to be metastable at all temperatures and has previously only been produced under kinetic control by routes such as the careful dehydration of ZrMo(2)O(7)(OH)(2).2H(2)O. High-speed, high-temperature in situ diffraction studies carried out at beamline ID11 at the European Synchrotron Radiation Facility (ESRF) have shown that it is in fact possible to prepare gamma-ZrMo(2)O(8) directly from the constituent oxides in a narrow temperature window around 1400 K where it appears to be entropically stabilized. Under these conditions gamma-ZrMo(2)O(8) forms in a matter of seconds and can be quenched to room temperature. Full quantitative Rietveld analysis of diffraction patterns collected in as little as 0.25 s during the synthesis has allowed the reaction pathway to be followed.

18.
Inorg Chem ; 48(19): 9271-81, 2009 Oct 05.
Article in English | MEDLINE | ID: mdl-19743811

ABSTRACT

We report structural studies on Mo(2)P(4)O(15) over the temperature range 16-731 K, which show that it is considerably more complex than revealed by earlier work. Its low-temperature structure has lattice parameters a = 24.1134(6) A, b = 19.5324(5) A, c = 25.0854(6) A, beta = 100.015(1) degrees, and V = 11635.0(5) A(3) at 120 K, containing 441 unique atoms in space group Pn, a remarkably high number for a material with such a simple composition. Mo(2)P(4)O(15) undergoes a structural phase transition at approximately 520 K to a high-temperature phase in space group P1, with lattice parameters a = 17.947(3) A, b = 19.864(3) A, c = 21.899(3) A, alpha = 72.421(3) degrees, beta = 78.174(4) degrees, gamma = 68.315(4) degrees, and V = 6877.2(19) A(3) at 573 K. The high-temperature structure, with 253 unique atoms, retains much of the low-temperature complexity.

19.
Chem Mater ; 31(18): 7395-7404, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-32063678

ABSTRACT

Brownmillerite-type Sr2ScGaO5 has been investigated by a range of experimental X-ray and neutron scattering techniques (diffraction, total scattering, and spectroscopy) and density functional theory calculations in order to characterize its structure and dynamics. The material undergoes a second-order phase transition on heating during which a rearrangement of the (GaO4/2)∞ tetrahedral chains occurs, such that they change from being essentially fully ordered in a polar structure at room temperature to being orientationally disordered above 400 °C. Pair distribution function analysis carried out using neutron total scattering data suggests that GaO4 tetrahedra remain as fairly rigid units above and below this transition, whereas coordination polyhedra in the (ScO6/2)∞ layers distort more. Inelastic neutron scattering and phonon calculations reveal the particular modes that are associated with this structural change, which may assist ionic conductivity in the material at higher temperatures. On the basis of the correlations between these findings and the measured conductivity, we have synthesized a derivative compound with increased conductivity and suggest a possible conduction mechanism in these brownmillerite-type solid electrolytes.

20.
Nanoscale ; 11(31): 14929-14936, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31361283

ABSTRACT

Porous Organic Cages (POCs) are an emerging class of self-assembling, porous materials with novel properties. They offer a key advantage over other porous materials in permitting facile solution processing and re-assembly. The combination of POCs with metal nanoparticles (NPs) unlocks applications in the area of catalysis. In this context, POCs can function as both the template of ultra-small NPs and a porous, but reprocessable, heterogeneous catalyst support. Here, we demonstrate the synthesis of ultra-small Pd NPs with an imine linked POC known as 'CC3', and show that hydrogen gas can be used to form metallic NPs at ∼200 °C without the reduction of the organic cage (and the accompanying, unwanted loss of crystallinity). The resulting materials are characterized using a range of techniques (including powder diffraction, scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy) and shown to be recrystallizable following dissolution in organic solvent. Their catalytic efficacy is demonstrated using the widely studied carbon monoxide oxidation reaction. This demonstration paves the way for using ultra-small NPs synthesized with POCs as solution-processable, self-assembling porous catalytic materials.

SELECTION OF CITATIONS
SEARCH DETAIL