Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Cell ; 156(3): 563-76, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24440334

ABSTRACT

The serum response factor (SRF) binds to coactivators, such as myocardin-related transcription factor-A (MRTF-A), and mediates gene transcription elicited by diverse signaling pathways. SRF/MRTF-A-dependent gene transcription is activated when nuclear MRTF-A levels increase, enabling the formation of transcriptionally active SRF/MRTF-A complexes. The level of nuclear MRTF-A is regulated by nuclear G-actin, which binds to MRTF-A and promotes its nuclear export. However, pathways that regulate nuclear actin levels are poorly understood. Here, we show that MICAL-2, an atypical actin-regulatory protein, mediates SRF/MRTF-A-dependent gene transcription elicited by nerve growth factor and serum. MICAL-2 induces redox-dependent depolymerization of nuclear actin, which decreases nuclear G-actin and increases MRTF-A in the nucleus. Furthermore, we show that MICAL-2 is a target of CCG-1423, a small molecule inhibitor of SRF/MRTF-A-dependent transcription that exhibits efficacy in various preclinical disease models. These data identify redox modification of nuclear actin as a regulatory switch that mediates SRF/MRTF-A-dependent gene transcription.


Subject(s)
Cell Nucleus/metabolism , Microfilament Proteins/metabolism , Oxidoreductases/metabolism , Serum Response Factor/metabolism , Signal Transduction , Actins/metabolism , Amino Acid Sequence , Anilides/pharmacology , Animals , Benzamides/pharmacology , Cell Line , Cells, Cultured , DNA-Binding Proteins/metabolism , Gene Knockdown Techniques , Humans , Mice , Microfilament Proteins/analysis , Microfilament Proteins/genetics , Mixed Function Oxygenases/analysis , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Nerve Growth Factor/metabolism , Neurites/metabolism , Oncogene Proteins, Fusion/metabolism , Oxidation-Reduction , Oxidoreductases/analysis , Oxidoreductases/genetics , Rats , Sequence Alignment , Trans-Activators , Transcription, Genetic , Zebrafish
2.
Development ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133135

ABSTRACT

Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells including for the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation, or death. Conditional loss of gata6 starting at 24 hr is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole with decreased expression levels of anterior second heart field (aSHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.

3.
Nature ; 589(7841): 270-275, 2021 01.
Article in English | MEDLINE | ID: mdl-33116299

ABSTRACT

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Colon/cytology , Drug Evaluation, Preclinical/methods , Lung/cytology , Organoids/drug effects , Organoids/virology , SARS-CoV-2/drug effects , Animals , COVID-19/prevention & control , Colon/drug effects , Colon/virology , Drug Approval , Female , Heterografts/drug effects , Humans , In Vitro Techniques , Lung/drug effects , Lung/virology , Male , Mice , Organoids/cytology , Organoids/metabolism , SARS-CoV-2/genetics , United States , United States Food and Drug Administration , Viral Tropism , Virus Internalization/drug effects , COVID-19 Drug Treatment
5.
Circ Res ; 130(7): 963-977, 2022 04.
Article in English | MEDLINE | ID: mdl-35255712

ABSTRACT

BACKGROUND: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells. Embryonic stem cells (ESCs) can be a source to derive human SAN-like pacemaker cells for disease modeling. METHODS: We used both a hamster model and human ESC (hESC)-derived SAN-like pacemaker cells to explore the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pacemaker cells of the heart. In the hamster model, quantitative real-time polymerase chain reaction and immunostaining were used to detect viral RNA and protein, respectively. We then created a dual knock-in SHOX2:GFP;MYH6:mCherry hESC reporter line to establish a highly efficient strategy to derive functional human SAN-like pacemaker cells, which was further characterized by single-cell RNA sequencing. Following exposure to SARS-CoV-2, quantitative real-time polymerase chain reaction, immunostaining, and RNA sequencing were used to confirm infection and determine the host response of hESC-SAN-like pacemaker cells. Finally, a high content chemical screen was performed to identify drugs that can inhibit SARS-CoV-2 infection, and block SARS-CoV-2-induced ferroptosis. RESULTS: Viral RNA and spike protein were detected in SAN cells in the hearts of infected hamsters. We established an efficient strategy to derive from hESCs functional human SAN-like pacemaker cells, which express pacemaker markers and display SAN-like action potentials. Furthermore, SARS-CoV-2 infection causes dysfunction of human SAN-like pacemaker cells and induces ferroptosis. Two drug candidates, deferoxamine and imatinib, were identified from the high content screen, able to block SARS-CoV-2 infection and infection-associated ferroptosis. CONCLUSIONS: Using a hamster model, we showed that primary pacemaker cells in the heart can be infected by SARS-CoV-2. Infection of hESC-derived functional SAN-like pacemaker cells demonstrates ferroptosis as a potential mechanism for causing cardiac arrhythmias in patients with COVID-19. Finally, we identified candidate drugs that can protect the SAN cells from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Ferroptosis , Humans , Myocytes, Cardiac/metabolism , SARS-CoV-2 , Sinoatrial Node/metabolism
6.
J Physiol ; 601(7): 1225-1246, 2023 04.
Article in English | MEDLINE | ID: mdl-36930567

ABSTRACT

Although hyperpolarization-activated cation (HCN) ion channels are well established to underlie cardiac pacemaker activity, their role in smooth muscle organs remains controversial. HCN-expressing cells are localized to renal pelvic smooth muscle (RPSM) pacemaker tissues of the murine upper urinary tract and HCN channel conductance is required for peristalsis. To date, however, the Ih pacemaker current conducted by HCN channels has never been detected in these cells, raising questions on the identity of RPSM pacemakers. Indeed, the RPSM pacemaker mechanisms of the unique multicalyceal upper urinary tract exhibited by humans remains unknown. Here, we developed immunopanning purification protocols and demonstrate that 96% of isolated HCN+ cells exhibit Ih . Single-molecule STORM to whole-tissue imaging showed HCN+ cells express single HCN channels on their plasma membrane and integrate into the muscular syncytium. By contrast, PDGFR-α+ cells exhibiting the morphology of ICC gut pacemakers were shown to be vascular mural cells. Translational studies in the homologous human and porcine multicalyceal upper urinary tracts showed that contractions and pacemaker depolarizations originate in proximal calyceal RPSM. Critically, HCN+ cells were shown to integrate into calyceal RPSM pacemaker tissues, and HCN channel block abolished electrical pacemaker activity and peristalsis of the multicalyceal upper urinary tract. Cumulatively, these studies demonstrate that HCN ion channels play a broad, evolutionarily conserved pacemaker role in both cardiac and smooth muscle organs and have implications for channelopathies as putative aetiologies of smooth muscle disorders. KEY POINTS: Pacemakers trigger contractions of involuntary muscles. Hyperpolarization-activated cation (HCN) ion channels underpin cardiac pacemaker activity, but their role in smooth muscle organs remains controversial. Renal pelvic smooth muscle (RPSM) pacemakers trigger contractions that propel waste away from the kidney. HCN+ cells localize to murine RPSM pacemaker tissue and HCN channel conductance is required for peristalsis. The HCN (Ih ) current has never been detected in RPSM cells, raising doubt whether HCN+ cells are bona fide pacemakers. Moreover, the pacemaker mechanisms of the unique multicalyceal RPSM of higher order mammals remains unknown. In total, 97% of purified HCN+ RPSM cells exhibit Ih . HCN+ cells integrate into the RPSM musculature, and pacemaker tissue peristalsis is dependent on HCN channels. Translational studies in human and swine demonstrate HCN channels are conserved in the multicalyceal RPSM and that HCN channels underlie pacemaker activity that drives peristalsis. These studies provide insight into putative channelopathies that can underlie smooth muscle dysfunction.


Subject(s)
Channelopathies , Humans , Mice , Animals , Swine , Channelopathies/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Kidney/metabolism , Muscle, Smooth/physiology , Cations/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Mammals/metabolism
7.
Biol Reprod ; 109(4): 533-551, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37552049

ABSTRACT

Niche-derived growth factors support self-renewal of mouse spermatogonial stem and progenitor cells through ERK MAPK signaling and other pathways. At the same time, dysregulated growth factor-dependent signaling has been associated with loss of stem cell activity and aberrant differentiation. We hypothesized that growth factor signaling through the ERK MAPK pathway in spermatogonial stem cells is tightly regulated within a narrow range through distinct intracellular negative feedback regulators. Evaluation of candidate extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK)-responsive genes known to dampen downstream signaling revealed robust induction of specific negative feedback regulators, including Spry4, in cultured mouse spermatogonial stem cells in response to glial cell line-derived neurotrophic factor or fibroblast growth factor 2. Undifferentiated spermatogonia in vivo exhibited high levels of Spry4 mRNA. Quantitative single-cell analysis of ERK MAPK signaling in spermatogonial stem cell cultures revealed both dynamic signaling patterns in response to growth factors and disruption of such effects when Spry4 was ablated, due to dysregulation of ERK MAPK downstream of RAS. Whereas negative feedback regulator expression decreased during differentiation, loss of Spry4 shifted cell fate toward early differentiation with concomitant loss of stem cell activity. Finally, a mouse Spry4 reporter line revealed that the adult spermatogonial stem cell population in vivo is demarcated by strong Spry4 promoter activity. Collectively, our data suggest that negative feedback-dependent regulation of ERK MAPK is critical for preservation of spermatogonial stem cell fate within the mammalian testis.


Subject(s)
Adult Stem Cells , Extracellular Signal-Regulated MAP Kinases , Male , Mice , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Feedback , Cell Differentiation/physiology , Spermatogonia/metabolism , Adult Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Mammals/metabolism
9.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770721

ABSTRACT

Dearomative borylation of coumarins and chromenes via conjugate addition represents a relatively unexplored and challenging task. To address this issue, herein, we report a new and general copper (I) catalyzed dearomative borylation process to synthesize boron-containing oxacycles. In this report, the borylation of coumarins, chromones, and chromenes comprising functional groups, such as esters, nitriles, carbonyls, and amides, has been achieved. In addition, the method generates different classes of potential boron-based retinoids, including the ones with oxadiazole and anthocyanin motifs. The borylated oxacycles can serve as suitable intermediates to generate a library of compounds.


Subject(s)
Benzopyrans , Boron , Coumarins , Copper , Amides
10.
J Biol Chem ; 296: 100696, 2021.
Article in English | MEDLINE | ID: mdl-33895139

ABSTRACT

Bone fractures are common impact injuries typically resolved through natural processes of osteogenic regeneration and bone remodeling, restoring the biological and mechanical function. However, dysfunctionality in bone healing and repair often arises in the context of aging-related chronic disorders, such as Alzheimer's disease (AD). There is unmet need for effective pharmacological modulators of osteogenic differentiation and an opportunity to probe the complex links between bone biology and cognitive disorders. We previously discovered the small molecule DIPQUO, which promotes osteoblast differentiation and bone mineralization in mouse and human cell culture models, and in zebrafish developmental and regenerative models. Here, we examined the detailed function of this molecule. First, we used kinase profiling, cellular thermal shift assays, and functional studies to identify glycogen synthase kinase 3-beta (GSK3-ß) inhibition as a mechanism of DIPQUO action. Treatment of mouse C2C12 myoblasts with DIPQUO promoted alkaline phosphatase expression and activity, which could be enhanced synergistically by treatment with other GSK3-ß inhibitors. Suppression of the expression or function of GSK3-ß attenuated DIPQUO-dependent osteogenic differentiation. In addition, DIPQUO synergized with GSK3-ß inhibitors to stimulate expression of osteoblast genes in human multipotent progenitors. Accordingly, DIPQUO promoted accumulation and activation of ß-catenin. Moreover, DIPQUO suppressed activation of tau microtubule-associated protein, an AD-related effector of GSK3-ß signaling. Therefore, DIPQUO has potential as both a lead candidate for bone therapeutic development and a pharmacological modulator of GSK3-ß signaling in cell culture and animal models of disorders including AD.


Subject(s)
Cell Differentiation/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Osteogenesis/drug effects , Signal Transduction/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , Mice , Myoblasts/cytology , Myoblasts/drug effects
11.
Tetrahedron Lett ; 922022 Mar 02.
Article in English | MEDLINE | ID: mdl-35935920

ABSTRACT

Herein, we report the design, synthesis and application of a borylated amidoxime reagent for the direct synthesis of functionalized oxadiazole and quinazolinone derivatives. This reagent exhibits broad synthetic utility to obtain a variety of biologically relevant drug-like molecules. It can be easily prepared at large scale from relatively inexpensive reagents, and can undergo facile transformations to obtain target compounds. The developed amidoxime reagent was synthesized from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile and hydroxyl amine hydrochloride using N,N-diisopropylethylamine as a base in ethanol under reflux conditions. Overall advantages include a metal-free route to boronated oxadiazoles, quinazolinone derivatives, and restriction of the multistep sequences. Importantly, the boron-rich pharmacophore derived compounds were obtained through an efficient and inexpensive strategy.

12.
Molecules ; 27(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35565972

ABSTRACT

A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure-activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer's agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.


Subject(s)
Boranes , Boron , Boron/chemistry , Boron Compounds/chemistry , Bortezomib , Drug Discovery , Enzyme Inhibitors/pharmacology , Humans
13.
Stem Cells ; 38(5): 613-623, 2020 05.
Article in English | MEDLINE | ID: mdl-31916656

ABSTRACT

Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule regulating organogenesis, angiogenesis, cell proliferation, and apoptosis. S1P is generated by sphingosine kinases (SPHK1 and SPHK2) through the phosphorylation of ceramide-derived sphingosine. Phenotypes caused by manipulating S1P metabolic enzymes and receptors suggested several possible functions for S1P in embryonic stem cells (ESCs), yet the mechanisms by which S1P and related sphingolipids act in ESCs are controversial. We designed a rigorous test to evaluate the requirement of S1P in murine ESCs by knocking out both Sphk1 and Sphk2 to create cells incapable of generating S1P. To accomplish this, we created lines mutant for Sphk2 and conditionally mutant (floxed) for Sphk1, allowing evaluation of ESCs that transition to double-null state. The Sphk1/2-null ESCs lack S1P and accumulate the precursor sphingosine. The double-mutant cells fail to grow due to a marked cell cycle arrest at G2/M. Mutant cells activate expression of telomere elongation factor genes Zscan4, Tcstv1, and Tcstv3 and display longer telomeric repeats. Adding exogenous S1P to the medium had no impact, but the cell cycle arrest is partially alleviated by the expression of a ceramide synthase 2, which converts excess sphingosine into ceramide. The results indicate that sphingosine kinase activity is essential in mouse ESCs for limiting the accumulation of sphingosine that otherwise drives cell cycle arrest.


Subject(s)
Cell Cycle Checkpoints/drug effects , Embryonic Stem Cells/metabolism , Phosphotransferases (Alcohol Group Acceptor)/adverse effects , Animals , Cell Proliferation , Female , Humans , Mice , Mice, Knockout
14.
Circulation ; 140(3): 207-224, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31163979

ABSTRACT

BACKGROUND: More than 90% of individuals with Noonan syndrome (NS) with mutations clustered in the CR2 domain of RAF1 present with severe and often lethal hypertrophic cardiomyopathy (HCM). The signaling pathways by which NS RAF1 mutations promote HCM remain elusive, and so far, there is no known treatment for NS-associated HCM. METHODS: We used patient-derived RAF1S257L/+ and CRISPR-Cas9-generated isogenic control inducible pluripotent stem cell (iPSC)-derived cardiomyocytes to model NS RAF1-associated HCM and to further delineate the molecular mechanisms underlying the disease. RESULTS: We show that mutant iPSC-derived cardiomyocytes phenocopy the pathology seen in hearts of patients with NS by exhibiting hypertrophy and structural defects. Through pharmacological and genetic targeting, we identify 2 perturbed concomitant pathways that, together, mediate HCM in RAF1 mutant iPSC-derived cardiomyocytes. Hyperactivation of mitogen-activated protein kinase kinase 1/2 (MEK1/2), but not extracellular regulated kinase 1/2, causes myofibrillar disarray, whereas the enlarged cardiomyocyte phenotype is a direct consequence of increased extracellular regulated kinase 5 (ERK5) signaling, a pathway not previously known to be involved in NS. RNA-sequencing reveals genes with abnormal expression in RAF1 mutant iPSC-derived cardiomyocytes and identifies subsets of genes dysregulated by aberrant MEK1/2 or ERK5 pathways that could contribute to the NS-associated HCM. CONCLUSIONS: Taken together, the results of our study identify the molecular mechanisms by which NS RAF1 mutations cause HCM and reveal downstream effectors that could serve as therapeutic targets for treatment of NS and perhaps other, more common, congenital HCM disorders.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Induced Pluripotent Stem Cells/physiology , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 2/genetics , Mitogen-Activated Protein Kinase 7/genetics , Noonan Syndrome/genetics , Proto-Oncogene Proteins c-raf/genetics , Adolescent , CRISPR-Cas Systems/physiology , Cardiomyopathy, Hypertrophic/metabolism , Cells, Cultured , Child , Female , HEK293 Cells , Humans , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , Male , Mitogen-Activated Protein Kinase 7/metabolism , Myocytes, Cardiac/physiology , Noonan Syndrome/metabolism , Proto-Oncogene Proteins c-raf/metabolism
15.
Stem Cells ; 37(8): 1003-1017, 2019 08.
Article in English | MEDLINE | ID: mdl-31021461

ABSTRACT

Induced pluripotent stem cells (iPSCs) derived by in vitro reprogramming of somatic cells retain the capacity to self-renew and to differentiate into many cell types. Pluripotency encompasses multiple states, with naïve iPSCs considered as ground state, possessing high levels of self-renewal capacity and maximum potential without lineage restriction. We showed previously that activation-induced cytidine deaminase (AICDA) facilitates stabilization of pluripotency during reprogramming. Here, we report that Acida-/- iPSCs, even when successfully reprogrammed, fail to achieve the naïve pluripotent state and remain primed for differentiation because of a failure to suppress fibroblast growth factor (FGF)/extracellular signal-regulated kinases (ERK) signaling. Although the mutant cells display marked genomic hypermethylation, suppression of FGF/ERK signaling by AICDA is independent of deaminase activity. Thus, our study identifies AICDA as a novel regulator of naïve pluripotency through its activity on FGF/ERK signaling. Stem Cells 2019;37:1003-1017.


Subject(s)
Cellular Reprogramming , Cytidine Deaminase/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblast Growth Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , MAP Kinase Signaling System , Animals , Cell Line , Cellular Reprogramming Techniques , Cytidine Deaminase/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Fibroblast Growth Factors/genetics , Mice
16.
J Sport Rehabil ; 30(2): 278-285, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32106079

ABSTRACT

CONTEXT: Documentation of patient outcomes following injury is critical to ensure that patients are receiving the best care. Several patient-reported outcome measures (PROMs) have been developed to assess knee-related function following injury; however, there is limited data investigating the measurement properties of these instruments using Rasch model analyses. OBJECTIVE: To evaluate the measurement properties of several PROMs through application of the Rasch measurement model. DESIGN: Cross-sectional study. SETTING: Clinical setting. PATIENTS OR OTHER PARTICIPANTS: A convenience sample of 160 adults (mean age = 28.08 [10.95] y; male = 38.10%) were recruited for this study. Data collected were combined with existing pilot data from an earlier study containing de-identified Knee Injury and Osteoarthritis Outcome Score (KOOS) data from 79 adults with knee injuries resulting in a total sample size of 239 adults. INTERVENTION(S): Psychometric evaluation of the KOOS, International Knee Documentation Committee subjective knee form, and the Marx Activity Rating Scale using the Rasch partial credit model. MAIN OUTCOME MEASURES: Infit and outfit statistics, item step difficulties, person ability parameters, category function, and item and test information functions. RESULTS: Large ceiling effects were present in the KOOS and International Knee Documentation Committee subjective knee form. Of the 65 items examined in this study, 35 items showed poor measurement properties. Item step difficulty for the remaining 30 items ranged from -5.45 (least difficult) to 0.57 logits (most difficult). The 5-category response options did not function well. Measurement precision decreased significantly as ability score increased beyond 0.30 logits. CONCLUSIONS: Despite their use in clinical practice, several items showed poor measurement properties. Future studies are needed to develop and evaluate novel items that are suitable for measuring knee-related function in high-functioning populations to ensure continuity of PROMs as individuals recover from injuries.

17.
J Sport Rehabil ; 30(2): 267-277, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32531759

ABSTRACT

CONTEXT: Previous research suggests that several knee-specific patient-reported outcome measures have poor measurement properties. The patient-reported outcomes knee assessment tool (PROKAT) was created to improve assessment of knee-specific function. Examination of the measurement properties of this new measure is critical to determine its clinical value. OBJECTIVE: Examine the measurement properties of the PROKAT. DESIGN: Cross-sectional study. SETTING: Clinical athletic training setting. PATIENTS OR OTHER PARTICIPANTS: The pilot study included 32 student-athletes (mean age = 20.78 [1.01], males = 56.30%). The full study included 203 student-athletes (mean age = 21.46 [4.64], males = 54.70%) from 3 separate institutions. The participants were recruited for both the pilot and full study using face-to-face and electronic (eg, email and social media sites) communications. INTERVENTION(S): Evaluation of the measurement properties of the PROKAT occurred using the Rasch partial-credit model. MAIN OUTCOME MEASURES: Infit and outfit statistics, item step difficulties, person ability parameters, category function, item and test information functions, and Cronbach alpha. An independent samples t test was used to evaluate the differences in injured and noninjured athletes' scores. RESULTS: The Rasch partial-credit model analysis of pilot test items and qualitative participant feedback were used to modify the initial PROKAT. Evaluation of the revised PROKAT (32 items) indicated 27 items had acceptable model-data fit. The injured athletes scored significantly worse than the noninjured athletes (t188 = 12.89; P < .01). The ceiling effects for the PROKAT were minimal (3.9%). CONCLUSIONS: A major advantage of this study was the use of the Rasch measurement and the targeted population. Compared with alternative knee-specific patient-reported outcome measures (eg, Knee Injury Osteoarthritis Outcome Score, International Knee Documentation Committee Subjective Knee Form), the PROKAT has low ceiling effects in athletic populations. In addition, evidence suggests the measure may be capable of distinguishing between injured and noninjured athletes.


Subject(s)
Athletic Injuries/rehabilitation , Knee Injuries/rehabilitation , Patient Reported Outcome Measures , Recovery of Function , Surveys and Questionnaires/standards , Adolescent , Adult , Female , Humans , Male , Pilot Projects , Reproducibility of Results , Young Adult
18.
Dev Biol ; 435(1): 41-55, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29331499

ABSTRACT

Small heat shock proteins are chaperones with variable mechanisms of action. The function of cardiac family member Hspb7 is unknown, despite being identified through GWAS as a potential cardiomyopathy risk gene. We discovered that zebrafish hspb7 mutants display mild focal cardiac fibrosis and sarcomeric abnormalities. Significant mortality was observed in adult hspb7 mutants subjected to exercise stress, demonstrating a genetic and environmental interaction that determines disease outcome. We identified large sarcomeric proteins FilaminC and Titin as Hspb7 binding partners in cardiac cells. Damaged FilaminC undergoes autophagic processing to maintain sarcomeric homeostasis. Loss of Hspb7 in zebrafish or human cardiomyocytes stimulated autophagic pathways and expression of the sister gene encoding Hspb5. Inhibiting autophagy caused FilaminC aggregation in HSPB7 mutant human cardiomyocytes and developmental cardiomyopathy in hspb7 mutant zebrafish embryos. These studies highlight the importance of damage-processing networks in cardiomyocytes, and a previously unrecognized role in this context for Hspb7.


Subject(s)
Cardiomyopathies/embryology , HSP27 Heat-Shock Proteins/metabolism , Proteostasis , Sarcomeres/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Autophagy/genetics , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Filamins/genetics , Filamins/metabolism , HSP27 Heat-Shock Proteins/genetics , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Sarcomeres/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
19.
Nature ; 500(7460): 89-92, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23803762

ABSTRACT

The activation-induced cytidine deaminase (AID; also known as AICDA) enzyme is required for somatic hypermutation and class switch recombination at the immunoglobulin locus. In germinal-centre B cells, AID is highly expressed, and has an inherent mutator activity that helps generate antibody diversity. However, AID may also regulate gene expression epigenetically by directly deaminating 5-methylcytosine in concert with base-excision repair to exchange cytosine. This pathway promotes gene demethylation, thereby removing epigenetic memory. For example, AID promotes active demethylation of the genome in primordial germ cells. However, different studies have suggested either a requirement or a lack of function for AID in promoting pluripotency in somatic nuclei after fusion with embryonic stem cells. Here we tested directly whether AID regulates epigenetic memory by comparing the relative ability of cells lacking AID to reprogram from a differentiated murine cell type to an induced pluripotent stem cell. We show that Aid-null cells are transiently hyper-responsive to the reprogramming process. Although they initiate expression of pluripotency genes, they fail to stabilize in the pluripotent state. The genome of Aid-null cells remains hypermethylated in reprogramming cells, and hypermethylated genes associated with pluripotency fail to be stably upregulated, including many MYC target genes. Recent studies identified a late step of reprogramming associated with methylation status, and implicated a secondary set of pluripotency network components. AID regulates this late step, removing epigenetic memory to stabilize the pluripotent state.


Subject(s)
Cytidine Deaminase/metabolism , Epigenesis, Genetic/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Cell Dedifferentiation/genetics , Cellular Reprogramming/genetics , Cytidine Deaminase/genetics , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mice , Pluripotent Stem Cells/enzymology , Transcription Factors/metabolism
20.
Development ; 142(12): 2094-108, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26081571

ABSTRACT

The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.


Subject(s)
Hepatocytes/cytology , Liver/embryology , Organogenesis/physiology , Stem Cells/cytology , Animals , Cell Differentiation , Cell Lineage , Humans , Liver/growth & development , Liver/metabolism , Liver Diseases/pathology , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL