Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nature ; 511(7510): 488-492, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25043028

ABSTRACT

The c-myc proto-oncogene product, Myc, is a transcription factor that binds thousands of genomic loci. Recent work suggested that rather than up- and downregulating selected groups of genes, Myc targets all active promoters and enhancers in the genome (a phenomenon termed 'invasion') and acts as a general amplifier of transcription. However, the available data did not readily discriminate between direct and indirect effects of Myc on RNA biogenesis. We addressed this issue with genome-wide chromatin immunoprecipitation and RNA expression profiles during B-cell lymphomagenesis in mice, in cultured B cells and fibroblasts. Consistent with long-standing observations, we detected general increases in total RNA or messenger RNA copies per cell (hereby termed 'amplification') when comparing actively proliferating cells with control quiescent cells: this was true whether cells were stimulated by mitogens (requiring endogenous Myc for a proliferative response) or by deregulated, oncogenic Myc activity. RNA amplification and promoter/enhancer invasion by Myc were separable phenomena that could occur without one another. Moreover, whether or not associated with RNA amplification, Myc drove the differential expression of distinct subsets of target genes. Hence, although having the potential to interact with all active or poised regulatory elements in the genome, Myc does not directly act as a global transcriptional amplifier. Instead, our results indicate that Myc activates and represses transcription of discrete gene sets, leading to changes in cellular state that can in turn feed back on global RNA production and turnover.


Subject(s)
Cell Proliferation , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Transformation, Neoplastic/pathology , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Disease Progression , Down-Regulation/genetics , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Genome/genetics , Lymphoma, B-Cell/metabolism , Male , Mice , Mitogens/pharmacology , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics , Up-Regulation/genetics
2.
Curr Protoc ; 4(1): e979, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38265186

ABSTRACT

Human disease modeling has been profoundly transformed by the introduction of human induced pluripotent stem cells (iPSCs), marking the onset of a new era. This ground-breaking development offers a tailored framework for generating pluripotent cells from any individual, effectively enabling the development of cellular models for the study of human physiology and diseases on an unprecedented scale. Although technologies for iPSCs generation have advanced rapidly over the past two decades, protocols for reprogramming patient-derived somatic cells into stem cells still pose a major challenge for the development of automated pipelines capable of generating iPSCs at scales that are cost-effective, reproducible, and easy to implement. Most methods commonly rely on extracellular matrix protein mixtures or synthetic substrates to promote efficient proliferation of iPSCs. Nonetheless, employing these substances entails a laborious and time-consuming process, as the culture surface requires coating treatments before cell seeding. Here we describe a method for reprogramming blood-derived mononucleated cells that eliminates the need to precoat culture surfaces for the entire experimental flow. This procedure is suitable for fresh or frozen purified peripheral blood mononuclear cells (PBMCs) and allows seeding of reprogrammed cells in a culture medium containing a fragment of laminin-511, regardless of the method of reprogramming employed. Our protocol incorporates a streamlined workflow that optimizes key factors, including cell density, culture medium composition, and iPSC culture propagation techniques. Using a precoating-free approach, we eliminate the time-consuming steps, while our optimized subcloning method improves the scalability of the protocol, making it suitable for large-scale applications. Additionally, the automation-friendly nature of our protocol allows for high-throughput processing, reducing the labor and costs associated with manual handling. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Miniaturized and time efficient precoating-free reprogramming of fresh or frozen PBMCs Alternate Protocol: Erythroid progenitor cells (EPCs) enrichment and reprogramming into iPSCs using Sendai viral vectors Basic Protocol 2: Picking and precoating-free optimized expansion of iPSC clones.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Leukocytes, Mononuclear , Automation , Clone Cells , Culture Media
3.
Biomed Pharmacother ; 177: 116991, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906021

ABSTRACT

Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 µM (EC50). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases.

4.
Mol Autism ; 11(1): 88, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33208191

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26-28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams-Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. METHODS: We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. RESULTS: We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. LIMITATIONS: In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. CONCLUSIONS: These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.


Subject(s)
Autism Spectrum Disorder/pathology , Cerebral Cortex/pathology , Chromosome Duplication/genetics , Chromosomes, Human, Pair 7/genetics , High-Throughput Screening Assays , Histone Deacetylase Inhibitors/pharmacology , Neurons/pathology , Transcription Factors, TFII/genetics , Autism Spectrum Disorder/genetics , Chromosomes, Human, Pair 7/metabolism , DNA Copy Number Variations/genetics , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Neurogenesis/drug effects , Neurons/drug effects , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors, TFII/metabolism , Transcription, Genetic/drug effects
5.
Elife ; 92020 03 12.
Article in English | MEDLINE | ID: mdl-32163370

ABSTRACT

Unrepaired DNA damage during embryonic development can be potentially inherited by a large population of cells. However, the quality control mechanisms that minimize the contribution of damaged cells to developing embryos remain poorly understood. Here, we uncovered an ATR- and CHK1-mediated transcriptional response to replication stress (RS) in mouse embryonic stem cells (ESCs) that induces genes expressed in totipotent two-cell (2C) stage embryos and 2C-like cells. This response is mediated by Dux, a multicopy retrogene defining the cleavage-specific transcriptional program in placental mammals. In response to RS, DUX triggers the transcription of 2C-like markers such as murine endogenous retrovirus-like elements (MERVL) and Zscan4. This response can also be elicited by ETAA1-mediated ATR activation in the absence of RS. ATR-mediated activation of DUX requires GRSF1-dependent post-transcriptional regulation of Dux mRNA. Strikingly, activation of ATR expands ESCs fate potential by extending their contribution to both embryonic and extra-embryonic tissues. These findings define a novel ATR dependent pathway involved in maintaining genome stability in developing embryos by controlling ESCs fate in response to RS.


Subject(s)
Checkpoint Kinase 1/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Differentiation , Cell Proliferation/physiology , Cells, Cultured , Checkpoint Kinase 1/genetics , Chimera , Chromatography, Liquid , Cloning, Molecular , DNA Damage , Embryonic Stem Cells , Gene Expression Regulation , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Tandem Mass Spectrometry
6.
ACS Med Chem Lett ; 11(5): 754-759, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435381

ABSTRACT

Lysine-specific demethylase 1 (LSD1 or KDM1A) is a FAD-dependent enzyme that acts as a transcription corepressor or coactivator by regulating the methylation status of histone H3 lysines K4 and K9, respectively. KDM1A represents an attractive target for cancer therapy. While, in the past, the main medicinal chemistry strategy toward KDM1A inhibition was based on the optimization of ligands that irreversibly bind the FAD cofactor within the enzyme catalytic site, we and others have also identified reversible inhibitors. Herein we reported the discovery of 5-imidazolylthieno[3,2-b]pyrroles, a new series of KDM1A inhibitors endowed with picomolar inhibitory potency, active in cells and efficacious after oral administration in murine leukemia models.

7.
J Med Chem ; 60(5): 1693-1715, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28186757

ABSTRACT

The balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described ( Part 1, DOI 10.1021.acs.jmedchem.6b01018 ) the identification of thieno[3,2-b]pyrrole-5-carboxamides as novel reversible inhibitors of KDM1A, whose preliminary exploration resulted in compound 2 with biochemical IC50 = 160 nM. We now report the structure-guided optimization of this chemical series based on multiple ligand/KDM1A-CoRest cocrystal structures, which led to several extremely potent inhibitors. In particular, compounds 46, 49, and 50 showed single-digit nanomolar IC50 values for in vitro inhibition of KDM1A, with high selectivity in secondary assays. In THP-1 cells, these compounds transcriptionally affected the expression of genes regulated by KDM1A such as CD14, CD11b, and CD86. Moreover, 49 and 50 showed a remarkable anticlonogenic cell growth effect on MLL-AF9 human leukemia cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Lysine/chemistry , Pyrroles/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Histone Demethylases , Humans , Inhibitory Concentration 50 , Pyrroles/chemistry , Structure-Activity Relationship
8.
J Med Chem ; 60(5): 1673-1692, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28186755

ABSTRACT

Lysine specific demethylase 1 KDM1A (LSD1) regulates histone methylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC50, thus identifying four chemical series. After data analysis, we have prioritized the chemical series of N-phenyl-4H-thieno[3, 2-b]pyrrole-5-carboxamide for which we obtained X-ray structures of the most potent hit (compound 19, IC50 = 2.9 µM) in complex with the enzyme. Initial expansion of this chemical class, both modifying core structure and decorating benzamide moiety, was directed toward the definition of the moieties responsible for the interaction with the enzyme. Preliminary optimization led to compound 90, which inhibited the enzyme with a submicromolar IC50 (0.162 µM), capable of inhibiting the target in cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Pyrroles/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , High-Throughput Screening Assays , Humans , Proton Magnetic Resonance Spectroscopy , Pyrroles/chemistry , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
9.
Cell Cycle ; 9(18): 3655-61, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20818171

ABSTRACT

The aberrant activation of oncogenic pathways promotes tumor progression, but concomitantly elicits compensatory tumor-suppressive responses, such as apoptosis or senescence. For example, Ras induces senescence, while Myc generally triggers apoptosis. Myc is in fact viewed as an anti-senescence oncogene, as it is a potent inducer of cell proliferation and immortalization, bypasses growth-inhibitory signals, and cooperates with Ras in cellular transformation. Recent reports prompt re-evaluation of Myc-induced senescence and of its role in tumor progression and therapy. We have shown that the cyclin-dependent kinase Cdk2, although redundant for cell cycle progression, has a unique role in suppressing a Myc-induced senescence program: Myc activation elicited expression of p16(INK4a) and p21(Cip1), and caused senescence in cells lacking Cdk2, but not in Cdk2-proficient cells. We show here that suppression of Myc-induced senescence by Cdk2 does not occur through phosphorylation of its purported substrate residue in Myc (Ser 62). Additional cellular activities have been identified that suppress Myc-induced senescence, including the Wrn helicase, Telomerase and Miz1. These senescencesuppressing activities were critical for tumor progression, as deficiency in either Cdk2, telomerase or Miz1 reduced the onset of Myc-induced lymphoma in transgenic mice. Other gene products like p53, SUV39H1 or TGFß promoted senescence, which together with apoptosis contributed to tumor suppression. Paradoxically, Myc directly counteracted the very same senescence program that it potentially elicited, since it positively regulated Wrn, Telomerase and Cdk2 activity. Furthermore, Cdk2 inhibition re-activated the latent senescence program in Myc expressing cells. Hence, while these molecules are instrumental to the oncogenic action of Myc, they may simultaneously constitute its Achille's heel for therapeutic development.


Subject(s)
Cellular Senescence/physiology , Cyclin-Dependent Kinase 2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Apoptosis , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Mice , Phosphorylation , Proto-Oncogene Proteins c-myc/genetics , RecQ Helicases/metabolism , Telomerase/metabolism , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/metabolism , ras Proteins/metabolism
10.
Cell Cycle ; 9(23): 4622-6, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21127397

ABSTRACT

Deregulated expression of Myc under the control of an immunoglobulin enhancer induces lymphoma formation in mice. The development of lymphomas is limited by TGFß-dependent senescence and high levels of Myc expression are continuously required to antagonize senescence. The biological processes underlying senescence are not fully resolved. We report here a comprehensive analysis of TGFß-dependent alterations in gene expression when the Myc transgene is switched off. Our data show that Myc-induced target genes are downregulated in a TGFß-independent manner. In contrast, TGFß is required to upregulate a broad spectrum of genes that are characteristic of different T-cell lineages when Myc is turned off. The analysis reveals a significant overlap between these Myc-repressed genes with genes that are targets of polycomb repressive complexes in embryonic stem cells. Therefore, TGFß-dependent senescence is associated with gene expression patterns indicative of abortive cellular differentiation along several lineages.


Subject(s)
Cellular Senescence , Gene Expression Regulation, Neoplastic , Lymphoma/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Cell Lineage , Down-Regulation , Gene Expression Profiling , Lymphoma/metabolism , Mice , Polycomb-Group Proteins , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transforming Growth Factor beta/genetics , Up-Regulation
11.
J Virol ; 77(15): 8280-9, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12857897

ABSTRACT

Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that has been suggested to act as a cofactor in the progression of human immunodeficiency virus disease. However, the lack of suitable experimental models has hampered the elucidation of the mechanisms of HHV-6-mediated immune suppression. Here, we used ex vivo lymphoid tissue to investigate the cellular tropism and pathogenic mechanisms of HHV-6. Viral strains belonging to both HHV-6 subgroups (A and B) were able to productively infect human tonsil tissue fragments in the absence of exogenous stimulation. The majority of viral antigen-expressing cells were CD4(+) T lymphocytes expressing a nonnaive phenotype, while CD8(+) T cells were efficiently infected only with HHV-6A. Accordingly, HHV-6A infection resulted in the depletion of both CD4(+) and CD8(+) T cells, whereas in HHV-6B-infected tissue CD4(+) T cells were predominantly depleted. The expression of different cellular antigens was dramatically altered in HHV-6-infected tissues: whereas CD4 was upregulated, both CD46, which serves as a cellular receptor for HHV-6, and CD3 were downmodulated. However, CD3 downmodulation was restricted to infected cells, while the loss of CD46 expression was generalized. Moreover, HHV-6 infection markedly enhanced the production of the CC chemokine RANTES, whereas other cytokines and chemokines were only marginally affected. These results provide the first evidence, in a physiologically relevant study model, that HHV-6 can severely affect the physiology of secondary lymphoid organs through direct infection of T lymphocytes and modulation of key membrane receptors and chemokines.


Subject(s)
Herpesvirus 6, Human/pathogenicity , Palatine Tonsil/virology , Roseolovirus Infections/physiopathology , Antigens, CD/metabolism , CD3 Complex/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chemokine CCL5/metabolism , Culture Techniques , Down-Regulation , Flow Cytometry , Humans , Membrane Cofactor Protein , Membrane Glycoproteins/metabolism , Palatine Tonsil/physiopathology , Roseolovirus Infections/virology , Up-Regulation , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL