Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Int Med Res ; 52(3): 3000605241233418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38548472

ABSTRACT

OBJECTIVES: Despite being an important research topic in oral biomaterials, few studies have demonstrated the differences between poly(d,l-lactide-co-glycolide)/hydroxyapatite (PLGA/HA) and poly(d,l-lactic acid)/hydroxyapatite (PDLLA/HA). In this study, PLGA/HA and PDLLA/HA scaffolds were prepared using three-dimensional (3D) printing technology and implanted into radius defects in rabbits to assess their effects on bone regeneration. METHODS: In this study, 6 mm × 4 mm bone defects were generated in the bilateral radii of rabbits. 3D-printed PLGA/HA and PDLLA/HA scaffolds were implanted into the defects. X-ray imaging, micro-computed tomography, and hematoxylin-eosin staining were performed to observe the degradation of the materials, the presence of new bone, and bone remodeling in the bone defect area. RESULTS: The PLGA/HA scaffolds displayed complete degradation at 20 weeks, whereas PDLLA/HA scaffolds exhibited incomplete degradation. Active osteoblasts were detected in both groups. The formation of new bone, bone marrow cavity reconstruction, and cortical bone remodeling were better in the PLGA/HA group than in the PDLLA/HA group. CONCLUSIONS: PLGA/HA scaffolds performed better than PDLLA/HA scaffolds in repairing bone defects, making the former scaffolds more suitable as bone substitutes at the same high molecular weight.


Subject(s)
Polyglycolic Acid , Radius , Animals , Rabbits , Polylactic Acid-Polyglycolic Acid Copolymer , Radius/diagnostic imaging , Radius/surgery , Lactic Acid , X-Ray Microtomography , Durapatite , Printing, Three-Dimensional , Tissue Scaffolds
2.
Br J Oral Maxillofac Surg ; 61(8): 527-533, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37679196

ABSTRACT

This study aimed to assess effects of 3-dimensionally (3D) printed poly-d,l-lactin (PDLLA) on human alveolar bone-derived mesenchymal stem cell (h-ABMSC) osteogenic proliferation and differentiation. Human ABMSCs were cultured and identified using flow cytometry and morphological analysis. Control and PDLLA experimental groups were assessed using a Cell Counting Kit-8 (CCK-8) to detect cellular cytotoxicity and proliferative activity. Real-time quantitative polymerase chain reaction was used to determine expression levels of osteogenesis genes including alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx-2), osteopontin (OPN), and osteocalcin (OCN). The results showed that h-ABMSCs were successfully cultured and revealed by microscopic observation. Human ABMSCs were spindle-shaped, with clustered and fish-like primary cells. Cell surface markers were negative for CD34 and positive for CD44 and CD90. PDLLA had no cytotoxicity. Human ABMSCs proliferated normally, and osteogenic differentiation of the cells was observed on the surface of PDLLA. Cellular proliferative activity and expression levels of osteogenesis-related genes of PDLLA and control groups showed no significant difference, including ALP, Runx-2, OPN, and OCN. These results suggest that 3D-printed PDLLA has good cell compatibility and biological activity.

SELECTION OF CITATIONS
SEARCH DETAIL