Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Cereb Cortex ; 32(4): 808-823, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34339491

ABSTRACT

Parkinson's disease (PD) is characterized pathologically by alpha-synuclein (α-Syn) aggregates and clinically by the motor as well as cognitive deficits, including impairments in sequence learning and habit learning. Using intracerebral injection of WT and A53T mutant α-Syn fibrils, we investigate the behavioral mechanism of α-Syn for procedure-learning deficit in PD by critically determining the α-Syn-induced effects on model-based goal-directed behavior, model-free (probability-based) habit learning, and hierarchically organized sequence learning. 1) Contrary to the widely held view of habit-learning deficit in early PD, α-Syn aggregates in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) did not affect acquisition of habit learning, but selectively impaired goal-directed behavior with reduced value sensitivity. 2) α-Syn in the DLS (but not DMS) and SNc selectively impaired the sequence learning by affecting sequence initiation with the reduced first-step accuracy. 3) Adenosine A2A receptor (A2AR) antagonist KW6002 selectively improved sequence learning by preferentially improving sequence initiation and shift of sequence learning as well as behavioral reactivity. These findings established a casual role of α-Syn in the SN-DLS pathway in sequence-learning deficit and DMS α-Syn in goal-directed behavior deficit and suggest a novel therapeutic strategy to improve sequence-learning deficit in PD with enhanced sequence initiation by A2AR antagonists.


Subject(s)
Parkinson Disease , alpha-Synuclein , Adenosine A2 Receptor Antagonists , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Receptor, Adenosine A2A/metabolism , alpha-Synuclein/metabolism
2.
Front Cell Neurosci ; 17: 1164796, 2023.
Article in English | MEDLINE | ID: mdl-37153633

ABSTRACT

Oxytocin and its target receptor (oxytocin receptor, OXTR) exert important roles in the regulation of complex social behaviors and cognition. The oxytocin/OXTR system in the brain could activate and transduce several intracellular signaling pathways to affect neuronal functions or responses and then mediate physiological activities. The persistence and outcome of the oxytocin activity in the brain are closely linked to the regulation, state, and expression of OXTR. Increasing evidence has shown that genetic variations, epigenetic modification states, and the expression of OXTR have been implicated in psychiatric disorders characterized by social deficits, especially in autism. Among these variations and modifications, OXTR gene methylation and polymorphism have been found in many patients with psychiatric disorders and have been considered to be associated with those psychiatric disorders, behavioral abnormalities, and individual differences in response to social stimuli or others. Given the significance of these new findings, in this review, we focus on the progress of OXTR's functions, intrinsic mechanisms, and its correlations with psychiatric disorders or deficits in behaviors. We hope that this review can provide a deep insight into the study of OXTR-involved psychiatric disorders.

3.
MethodsX ; 9: 101701, 2022.
Article in English | MEDLINE | ID: mdl-35492209

ABSTRACT

The retinal mitochondrial injury model in rat has been developed using the mitochondrial oxidative phosphorylation uncoupler, carbonylcyanide m-chlorophenyl hydrazine (CCCP). However, the CCCP-induced murine retinal mitochondrial injury model has not been reported. Here, the optimized conditions for the murine retinal mitochondrial injury model were established by intravitreal injection of different doses of CCCP (0, 2.5, 5, 7.5, 10, 12.5, 15 µg). Indeed, it has been reported that CCCP induces Opa1 cleavage and phosphorylation of ERK in cultured cells and rat retinas. Thus, we measured phosphorylated (p) -Erk and L/S-Opa1 following CCCP-induced retinal injury. Meanwhile, KW6002 (A2A receptor antagonist) pretreatment inhibited retinal injury induced by CCCP at 10 and 15 µg doses differently. Intravitreal injection of 10 µg doses of CCCP can induce apoptosis of retinal ganglion cells and decrease of retinal thickness, but intravitreal injection of 15 µg doses of CCCP is the appropriate dose to study the protective effect of A2A receptor. (1) Dose dependent effects of intravitreal injection of CCCP on the levels of L/S-Opa1 and p-Erk; (2) A2A receptor antagonist (KW6002) only inhibited the apoptosis of ganglion cells, but did not affect the thickness of retina with 10µg dosage of CCCP intravitreal injection; (3) A2A receptor antagonist (KW6002) inhibited the apoptosis of ganglion cells and increased the thickness of retina with 15µg dosage of CCCP intravitreal injection.

4.
Neuropharmacology ; 208: 108981, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35149135

ABSTRACT

Blockade of adenosine A2A receptors (A2ARs) protects against neuronal damage caused by various brain insults including mitochondrial toxicity, but the precise neuroprotective mechanisms are unclear. Here, we studied the effects of the A2AR antagonist KW6002 on retinal injury induced by the mitochondrial oxidative phosphorylation uncoupler, carbonylcyanide m-chlorophenyl hydrazine (CCCP) and alterations in competing endogenous RNA (ceRNA) network. We found that KW6002 treatment partially reversed CCCP-induced reduction in retinal thickness and retinal ganglia cell number by increasing mitochondrial content and reducing retinal ganglia cells apoptosis. Furthermore, we employed whole-transcriptome sequencing to explore ceRNA network changes associated with CCCP-induced retinal injury and its reversal by KW6002. This analysis revealed that A2AR blockade reduced the number of CCCP-induced microRNAs by ∼60%, but increased the number of CCCP-induced circular RNAs by ∼50%. Among CeRNA network changes, CCCP-induced retinal injury was associated with a possible enrichment of the tumor necrosis factor signaling pathway and its related 126 microRNAs, 237 long non-coding RNAs, 58 circular RNAs competing. Moreover, the A2AR antagonist-mediated protection against CCCP-induced retinal injury was possibly associated with the up-regulation of mature brain-derived neurotrophic factor and its related 4 microRNAs competed by 43 long non-coding RNAs and 9 circular RNAs competing. These ceRNA network alterations by CCCP treatment and its reversal by A2AR antagonist may contribute to understanding the transcriptome mechanism for protection against CCCP-induced retinal injury by A2AR antagonists.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Adenosine , Carbonyl Cyanide m-Chlorophenyl Hydrazone , MicroRNAs/genetics , RNA, Circular , Receptor, Adenosine A2A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL