Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Blood ; 135(17): 1472-1483, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32315388

ABSTRACT

Internal tandem duplication (ITD) mutations within the FMS-like receptor tyrosine kinase-3 (FLT3) can be found in up to 25% to 30% of acute myeloid leukemia (AML) patients and confer a poor prognosis. Although FLT3 tyrosine kinase inhibitors (TKIs) have shown clinical responses, they cannot eliminate primitive FLT3-ITD+ AML cells, which are potential sources of relapse. Therefore, elucidating the mechanisms underlying FLT3-ITD+ AML maintenance and drug resistance is essential to develop novel effective treatment strategies. Here, we demonstrate that FLT3 inhibition induces histone deacetylase 8 (HDAC8) upregulation through FOXO1- and FOXO3-mediated transactivation in FLT3-ITD+ AML cells. Upregulated HDAC8 deacetylates and inactivates p53, leading to leukemia maintenance and drug resistance upon TKI treatment. Genetic or pharmacological inhibition of HDAC8 reactivates p53, abrogates leukemia maintenance, and significantly enhances TKI-mediated elimination of FLT3-ITD+ AML cells. Importantly, in FLT3-ITD+ AML patient-derived xenograft models, the combination of FLT3 TKI (AC220) and an HDAC8 inhibitor (22d) significantly inhibits leukemia progression and effectively reduces primitive FLT3-ITD+ AML cells. Moreover, we extend these findings to an AML subtype harboring another tyrosine kinase-activating mutation. In conclusion, our study demonstrates that HDAC8 upregulation is an important mechanism to resist TKIs and promote leukemia maintenance and suggests that combining HDAC8 inhibition with TKI treatment could be a promising strategy to treat FLT3-ITD+ AML and other tyrosine kinase mutation-harboring leukemias.


Subject(s)
Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Forkhead Box Protein O1/metabolism , Histone Deacetylases/metabolism , Leukemia, Myeloid, Acute/pathology , Repressor Proteins/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Forkhead Box Protein O1/genetics , Gene Expression Regulation, Neoplastic , Histone Deacetylases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Prognosis , Protein Kinase Inhibitors/pharmacology , Repressor Proteins/genetics , Tandem Repeat Sequences , Tumor Cells, Cultured , Up-Regulation , Xenograft Model Antitumor Assays
2.
J Immunol ; 195(4): 1849-57, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26179902

ABSTRACT

Graft-versus-host disease (GVHD) is the major complication after allogeneic bone marrow transplantation. Valproic acid (VPA) was described as a histone deacetylase inhibitor that had anti-inflammatory effects and reduced the production of proinflammatory cytokines in experimental autoimmune disease models. Using well-characterized mouse models of MHC-mismatched transplantation, we studied the effects of VPA on GVHD severity and graft-versus-leukemia (GVL) activity. Administration of VPA significantly attenuated the clinical severity of GVHD, the histopathology of GVHD-involved organs, and the overall mortality from GVHD. VPA downregulated Th1 and Th17 cell responses and cytokine production in vitro and in vivo, whereas its effect on GVHD was regulatory T cell independent. The effect of VPA was related to its ability to directly reduce the activity of Akt, an important regulator of T cell immune responses. Importantly, when mice received lethal doses of host-type acute leukemia cells, administration of VPA did not impair GVL activity and resulted in significantly improved leukemia-free survival. These findings reveal a unique role for VPA as a histone deacetylase inhibitor in reducing the donor CD4(+) T cells that contribute to GVHD, which may provide a strategy to reduce GVHD while preserving the GVL effect.


Subject(s)
Graft vs Host Disease/etiology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Valproic Acid/pharmacology , Animals , Bone Marrow Transplantation/adverse effects , Cell Differentiation/drug effects , Cell Differentiation/immunology , Disease Models, Animal , Female , Graft vs Host Disease/drug therapy , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Severity of Illness Index , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/cytology , Th1 Cells/metabolism , Th17 Cells/cytology , Th17 Cells/metabolism , Transplantation, Homologous , Valproic Acid/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL