Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Exp Biol ; 227(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38380449

ABSTRACT

Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6 months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.


Subject(s)
Salmonidae , Animals , Ecosystem , Oxygen , Gills , Temperature , Trout , Water , Body Size
2.
Ecol Appl ; 33(5): e2868, 2023 07.
Article in English | MEDLINE | ID: mdl-37128749

ABSTRACT

Stream restorations are increasingly critical for managing and recovering freshwater biodiversity in human-dominated landscapes. However, few studies have quantified how rehabilitative actions promulgate through aquatic communities over decades. Here, a long-term dataset is analyzed for fish assemblage change, incorporating data pre- and post-restoration periods, and testing the extent to which native assemblage stability has increased over time. In the late 1950s, a large capacity dam was installed on Putah Creek (Solano County, CA, USA), which altered the natural flow regime, channel structure, geomorphic processes, and overall ecological function. Notably, downstream flows were reduced (especially during summer months) resulting in an aquatic assemblage dominated by warm-water nonnative species, while endemic native species subsisted at low levels as subordinates. A court-mediated Accord was ratified in 2000, providing a more natural flow regime, specifically for native and anadromous fishes in the stream. The richness of nonnative species decreased at every site following the Accord, while the richness of native species increased or stayed constant. At the three most upstream sites, native species richness increased over time and ultimately exceeded nonnative richness. Native assemblage recovery was strongest upriver, closer to flow releases and habitat restoration activities, and decreased longitudinally downstream. Rank-abundance curves through time revealed that, while species evenness was low throughout the study, dominance shifted from nonnative to native species in the upstream sites coincident with rehabilitation efforts. Mean rank shifts decreased following flow rehabilitation; thus the assemblage became increasingly stable over time following flow rehabilitation. Putah Creek's rehabilitation may represent a model for others interested in improving endemic freshwater communities in degraded ecosystems.


Subject(s)
Biodiversity , Ecosystem , Humans , Animals , Fishes , Seasons , Fresh Water
3.
Environ Sci Technol ; 57(26): 9580-9591, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37350451

ABSTRACT

The Longfin Smelt (Spirinchus thaleichthys) population in the San Franscisco Bay/Sacramento-San Joaquin Delta (Bay-Delta) has declined to ∼1% of its pre-1980s abundance and, as a result, is listed as threatened under the California Endangered Species Act. The reasons for this decline are multiple and complex, including the impacts of contaminants. Because the spawning and rearing seasons of Longfin Smelt coincide with the rainy season, during which concentrations of contaminants increase due to runoff, we hypothesized that early life stages may be particularly affected by those contaminants. Bifenthrin, a pyrethroid insecticide commonly used in agricultural and urban sectors, is of concern. Concentrations measured in the Bay-Delta have been shown to disrupt the behavior, development, and endocrine system of other fish species. The objective of the present work was to assess the impact of bifenthrin on the early developmental stages of Longfin Smelt. For this, embryos were exposed to 2, 10, 100, and 500 ng/L bifenthrin from fertilization to hatch, and larvae were exposed to 2, 10, and 100 ng/L bifenthrin from one day before to 3 days post-hatch. We assessed effects on size at hatch, yolk sac volume, locomotory behavior, and upper thermal susceptibility (via cardiac endpoints). Exposure to these environmentally relevant concentrations of bifenthrin did not significantly affect the cardiac function of larval Longfin Smelt; however, exposures altered their behavior and resulted in smaller hatchlings with reduced yolk sac volumes. This study shows that bifenthrin affects the fitness-determinant traits of Longfin Smelt early life stages and could contribute to the observed population decline.


Subject(s)
Osmeriformes , Pyrethrins , Water Pollutants, Chemical , Animals , Pyrethrins/toxicity , Endangered Species
4.
Article in English | MEDLINE | ID: mdl-36049729

ABSTRACT

The Delta Smelt (Hypomesus transpacificus), once an abundant fish endemic to the Sacramento-San Joaquin Estuary, is now on the brink of extinction. Due to the high sensitivity of this species, knowledge of their stress response will be vital to their future survival and sustainability. Understanding the magnitude and kinetics of cortisol induction in Delta Smelt will provide valuable information when interpreting the degree of environmentally relevant stressors, such as warming and predator exposure. As little is known about the primary stress response and cortisol dynamics in Delta Smelt, the first aim of this study was to measure basal and maximal whole-body cortisol prior to and following exposure to a sublethal and significant netting stress at 17 and 21 °C. Our findings reveal that juvenile Delta Smelt held at 21 °C display an exacerbated stress response and a reduction in available energy compared to fish held at 17 °C. There was no evidence of the secondary stress response to the netting stress as whole-body glucose and lactate levels in treatment groups remained similar to basal values. The second aim of this study was to investigate the effect of a largemouth bass (Micropterus salmoides) predator cue, which was found to induce a significant increase in cortisol relative to control levels in juvenile Delta Smelt. Indices such as cortisol can be used as bioindicators of stress in the field and results from this study suggest that moderate temperatures and reduced predation are optimal release conditions during hatchery-based supplementation to minimize stress to this highly sensitive species.


Subject(s)
Osmeriformes , Animals , Endangered Species , Environmental Biomarkers , Glucose , Hydrocortisone , Lactates , Osmeriformes/physiology
5.
Article in English | MEDLINE | ID: mdl-31676412

ABSTRACT

The Sacramento splittail (Pogonichthys macrolepidotus) is a species of special concern that is native to the San Francisco Estuary, USA. Two genetically distinct populations exist and differ in maximal salinity tolerances. We examined the expression of 12 genes representative of osmoregulatory functions in the gill over a 14  day time course at two different salinities [11 or 14 PSU (Practical Salinity Units)] and revealed that each population showed distinct patterns of gene expression consistent with population differences in response to osmotic regimes. The relatively more salinity-tolerant San Pablo population significantly upregulated nine out of the 12 transcripts investigated on day 1 of 11 PSU salinity exposure in comparison to the day zero freshwater control. Three transcripts (nka1a, nka1b, and mmp13) were differentially expressed between the populations at 7 and 14 days of salinity exposure, suggesting a reduced ability of the relatively salinity-intolerant Central Valley population to recover. Additionally, a phylogenetic analysis of several Sacramento splittail Na+/K+-ATPase α1 sequences resulted in grouping by proposed paralog rather than species, suggesting that different paralogs of this gene may exist. These findings, together with prior research conducted on the Sacramento splittail, suggest that the San Pablo population may be able to preferentially regulate select osmoregulatory genes, including different Na+/K+-ATPase α1 paralogs, to better cope with salinity challenges.


Subject(s)
Cyprinidae/physiology , Gene Expression Regulation , Osmoregulation , Phylogeny , Salinity , Salt Tolerance , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Cyprinidae/classification , Fresh Water , Sodium-Potassium-Exchanging ATPase/genetics
6.
Rapid Commun Mass Spectrom ; 33(14): 1207-1220, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30993783

ABSTRACT

RATIONALE: Oxygen isotope ratios (δ18 O values) of fish otoliths (ear bones) are valuable geochemical tracers of water conditions and thermal life history. Delta Smelt (Hypomesus transpacificus) are osmerid forage fish endemic to the San Francisco Estuary, California, USA, that are on the verge of extinction. These fish exhibit a complex life history that allows them to survive in a dynamic estuarine environment; however, a rapidly warming climate threatens this thermally sensitive species. Here we quantify the accuracy and precision of using δ18 O values in otoliths to reconstruct the thermal life histories of Delta Smelt. METHODS: Delta Smelt were reared for 360 days using three different water sources with different ambient δ18 Owater values (-8.75‰, -5.28‰, and -4.06‰) and different water temperatures (16.4°C, 16.7°C, 18.7°C, and 20.5°C). Samples were collected after 170 days (n = 28) and 360 days (n = 14) post-hatch. In situ δ18 O values were measured from the core of the otolith to the dorsal edge using secondary ion mass spectrometry (SIMS) to reconstruct temporally resolved thermal life histories. RESULTS: The δ18 Ootolith values for Delta Smelt varied as a linear inverse function of water temperature: 1000 ln α = 18.39 (±0.43, 1SE)(103 TK-1 ) - 34.56 (±1.49, 1SE) and δ18 Ootolith(VPDB) - δ18 Owater (VPDB) = 31.34(±0.09, 1SE) - 0.19(±0.01, 1SE) × T ° C. When the ambient δ18 Owater value is known, this species-specific temperature-dependent oxygen isotope fractionation model facilitated the accurate (0.25°C) and precise (±0.37°C, 2σ) reconstruction of the water temperature experienced by the fish. In contrast, the use of existing general fractionation equations resulted in inaccurate temperature reconstructions. CONCLUSIONS: The species-specific δ18 Ootolith fractionation equation allowed for accurate and precise reconstructions of water temperatures experienced by Delta Smelt. Characterization of ambient δ18 Owater values remains a critical next step for reconstructing thermal life histories of wild Delta Smelt. This tool will provide new insights into habitat utilization, potential thermal refugia, and resilience to future warming for this critically endangered fish.


Subject(s)
Osmeriformes , Otolithic Membrane/chemistry , Oxygen Isotopes/analysis , Animals , Calibration , California , Climate , Ecosystem , Endangered Species/statistics & numerical data , Spectrometry, Mass, Secondary Ion/methods , Spectrometry, Mass, Secondary Ion/standards , Temperature
7.
Aquaculture ; 5112019 Sep 15.
Article in English | MEDLINE | ID: mdl-32831418

ABSTRACT

Delta smelt (Hypomesus transpacificus) is a critically endangered species endemic to the San Francisco Bay Delta (SFBD). Important for the conservation of this species is understanding the physiological and ecological impacts contributing to their population decline, and current studies lack information on embryonic development. Changes in patterns of salinity across the SFBD may be a particularly important environmental stressor contributing to the recruitment and survival of the species. Throughout their ontogeny, delta smelt may exhibit unique requirements and tolerances to environmental conditions including salinity. Here, we describe 22 stages of embryonic development of H. transpacificus that characterize early differentiation from the fertilized egg until hatching, allowing the identification of critical morphological features unique to this species. Additionally, we investigated aspects of physiological tolerance to environmental salinity during development. Embryos survived incubation at salinity treatments between 0.4 and 20 ppt, yet had lower hatch success at higher salinities. Prior to hatching, embryos exposed to higher salinities had increased osmolalities and reduced fractions of yolk implying that the elevated external salinity altered the physiology of the embryo and the environment internal to the chorion. Lastly, egg activation and fertilization appear to also be impacted by salinity. Altogether, we suggest that any potential tolerance to salinity during embryogenesis, a common feature in euryhaline teleost species, impacts life cycle transitions into, and out of, embryonic development. Results from this investigation should improve conservation and management practices of this species and further expand our understanding of the intimate relationship between an embryo and its environment.

8.
J Therm Biol ; 81: 170-177, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30975415

ABSTRACT

Thermal tolerance niche analyses have been used extensively to identify adaptive thermal tactics used by wholly aquatic fishes, however no study to date has quantified thermal niche characteristics of air-breathing fishes. We use standardized thermal methodologies to estimate temperature acclimation ranges, upper and lower acclimation response ratios, and thermal niche areas in common (Periophthalmus kalolo) and barred (Periophthalmus argentilineatus) mudskippers in air and water. Common and barred mudskippers had an upper chronic limit of 37.0 °C, and respective low chronic temperatures of 14.0 and 11.4 °C, resulting in acclimation scope values of 23.0 °C and 25.6 °C. Both fishes had moderately large thermal niches, with barred mudskipper expressing larger niche areas in both water and air than common mudskipper (676.6 and 704.2 °C2 compared to 641.6 and 646.5 °C2). Acclimation response ratios were relatively low, with fish gaining or losing between 0.10 and 0.43 °C of heat tolerance with each 1 °C change in acclimation temperature. Although intraspecific total niche areas remained largely unchanged between media (≤10%), both species showed a slight increase in heat tolerance but a notable upward shift in intrinsic tolerance when emerged. Media-dependent thermal niche adjustment is a unique, and thus far undescribed physiological adaptation that in combination with behavioral responses, allow mudskippers to thrive in some of the most austere thermal environments experienced by any fish.


Subject(s)
Ecosystem , Perciformes/physiology , Thermotolerance , Air , Animals , Temperature , Water
9.
J Fish Biol ; 94(5): 815-819, 2019 May.
Article in English | MEDLINE | ID: mdl-30854656

ABSTRACT

We reared white sturgeon Acipenser transmontanus under laboratory conditions and found that a random-forest model containing scute counts and total length predicted age significantly better than total length alone. Scute counts are rapid, inexpensive and non-lethal meristics to gather in the field. This technique could improve age estimates of imperilled sturgeon populations.


Subject(s)
Fishes/growth & development , Animals , Body Size , Fishes/anatomy & histology , Larva/anatomy & histology , Larva/growth & development , Morphogenesis
10.
Glob Chang Biol ; 24(2): e655-e670, 2018 02.
Article in English | MEDLINE | ID: mdl-29155460

ABSTRACT

Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade-offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 µatm PCO2 ) at two temperatures (-1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH ] and ventilation rate [fV ]), metabolic rate (M˙O2), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH , fV and M˙O2 significantly increased with warming, but not with elevated PCO2 . Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade-offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV , M˙O2, and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2 . Sustained increases in fV and M˙O2 after 28 days exposure to elevated PCO2 indicate additive (fV ) and synergistic (M˙O2) interactions occurred in combination with warming. Stressor-induced energetic trade-offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.


Subject(s)
Carbon Dioxide/chemistry , Climate Change , Perciformes/physiology , Acclimatization/physiology , Aging , Animals , Antarctic Regions , Carbon Dioxide/toxicity , Ecosystem , Hydrogen-Ion Concentration , Seawater , Temperature
11.
J Exp Biol ; 221(Pt 2)2018 01 29.
Article in English | MEDLINE | ID: mdl-29378879

ABSTRACT

There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers.


Subject(s)
Conservation of Natural Resources/methods , Fishes/genetics , Transcriptome , Animals
12.
Article in English | MEDLINE | ID: mdl-29958996

ABSTRACT

Understanding physiological limits and the ability to acclimatize to changing conditions will determine whether species will be able to cope with further increases in water temperature. Changes in temperature may be considered to become stressful for an ectotherm when it results in reduced performance, which can lead to fitness level consequences. The relative intensity of the stressor as well as the duration of the exposure to the stressor will determine the response observed. Transcriptomic responses can potentially indicate thresholds where physiological performance begins to decline. An understanding of the cellular shifts throughout the temperature range that an organism experiences in the wild is often lacking, especially for species of conservation concern such as the delta smelt (Hypomesus transpacificus). We examined the expression of 15 genes that represented cellular responses related to stress, growth, cell proliferation and osmoregulation to show how the response patterns change to acute increases in temperatures that occur throughout the thermal distribution of the species. Several genes showed U-shaped or inverted U-shaped response patterns suggesting the presence of sub-lethal thresholds as temperatures increase. We also highlight the importance of including a temporal component to exposure studies as several genes showed a delay in the recovery to control levels at extreme temperatures. We propose that the non-linear response patterns represent sub-lethal thermal thresholds that can predict the severity of the response to thermal stressors. Identifying these sub-lethal thresholds can help differentiate between responses to routine increases in water temperature and responses that can lead to longer-term fitness impacts.


Subject(s)
Estuaries , Fishes/physiology , Stress, Physiological , Temperature , Animals , Cell Proliferation , Fish Proteins/genetics , Fishes/growth & development , Heat-Shock Proteins/genetics , Osmoregulation , Principal Component Analysis , Real-Time Polymerase Chain Reaction
13.
J Therm Biol ; 76: 147-155, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30143289

ABSTRACT

Human-induced thermal variability can disrupt energy balance and performance in ectotherms; however, phenotypic plasticity may play a pivotal protective role. Ectotherm performance can be maintained in thermally heterogeneous habitats by reducing the thermal sensitivity of physiological processes and concomitant performance. We examined the capacity of juvenile green sturgeon (Acipenser medirostris) to respond to daily thermal variation. Juveniles (47 days post-hatch) were exposed to either stable (15 ±â€¯0.5 °C) or variable (narrowly variable: 13-17 °C day-1 or widely variable 11-21 °C day-1) thermoperiod treatments, with equivalent mean temperatures (15 ±â€¯0.5 °C), for 21 days. Growth (relative growth rate, % body mass gain), upper thermal tolerance (critical thermal maxima, CTMax) and the thermal sensitivity of swimming performance (critical swimming speed, Ucrit) were assessed in fish from all treatments. Accelerated growth was observed in fish maintained under widely variable temperatures compared to narrowly variable and stable temperatures. No significant variation in CTMax was observed among thermoperiod treatments, suggesting all treatment groups acclimated to the mean temperature rather than daily maximums. The widely variable treatment induced a plastic response in swimming performance, where Ucrit was insensitive to temperature and performance was maintained across a widened thermal breadth. Maximum Ucrit attained was similar among thermoperiod treatments, but performance was maximised at different test temperatures (stable: 4.62 ±â€¯0.44 BL s-1 at 15 °C; narrowly variable: 4.52 ±â€¯0.23 BL s-1 at 21 °C; widely variable: 3.90 ±â€¯0.24 BL s-1 at 11 °C, mean ±â€¯s.e.m.). In combination, these findings suggest juvenile A. medirostris are resilient to daily fluctuations in temperature, within the temperature range tested here.


Subject(s)
Acclimatization , Fishes/physiology , Animals , Female , Fishes/growth & development , Male , Swimming , Temperature
14.
J Fish Biol ; 93(5): 1000-1004, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30251252

ABSTRACT

Preferred water temperatures and acute temperature tolerance limits of two salmonids in California were assessed: juvenile Chinook salmon Oncorhynchus tshawytscha, a native anadromous species, and sub-adult brook trout Salvelinus fontinalis, an introduced game species. These two species preferred similar temperatures across an 18 h temperature preference experiment and showed similar critical thermal tolerance limits, suggesting a substantial thermal habitat overlap in the wild.


Subject(s)
Behavior, Animal , Ecosystem , Salmon/physiology , Temperature , Trout/physiology , Animals , California , Endangered Species , Introduced Species , Water
15.
J Fish Biol ; 93(5): 952-960, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30246375

ABSTRACT

Early developmental stages of fishes are particularly sensitive to changes in environmental variables that affect physiological processes such as metabolism and growth. Both temperature and food availability have significant effects on the growth and survival of larval and juvenile fishes. As climate change and anthropogenic disturbances influence sensitive rearing environments of fishes it is unlikely that they will experience changes in temperature or food availability in isolation. Therefore, it is critical that we determine the effects of each of these potential stressors on larval growth and development, as well as understand the additive, synergistic or antagonistic effects of both. We reared threatened green sturgeon Acipenser medirostris (initial age ca. 32 days post hatch) at four temperatures (11, 13, 16 and 19°C) and two food availability rates (100% and 40% of optimal) to assess the effects of these stressors and their interactions on larval growth. We compared the overall size (fork length, total length and mass), growth rates (cm day-1 and g day-1 ) and relative condition factor of these larval and juvenile fish at 3 week intervals for up to 12 weeks. Our results indicated that temperature and food availability both had significant effects on growth and condition and that there was a significant interaction between the two. Fish reared with limited food availability exhibited similar patterns in growth rates to those reared with elevated food rates, but the effects of temperature were greatly attenuated when fish were food-limited. Also, the effects of temperature on condition were reversed when fish were reared with restricted food, such that fish reared at 19°C exhibited the highest relative condition when fed optimally, but the lowest relative condition when food was limited. These data are critical for the development of relevant bioenergetics models, which are needed to link the survival of larval sturgeons with historic environmental regimes, pinpoint temperature ranges for optimal survival and help target future restoration sites that will be important for the recovery of sturgeon populations.


Subject(s)
Fishes/physiology , Animals , Climate Change , Conservation of Natural Resources , Ecosystem , Endangered Species , Fishes/anatomy & histology , Fishes/growth & development , Larva/anatomy & histology , Larva/growth & development , Stress, Physiological , Temperature
16.
J Exp Biol ; 219(Pt 11): 1705-16, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27252456

ABSTRACT

Climate change and associated increases in water temperatures may impact physiological performance in ectotherms and exacerbate endangered species declines. We used an integrative approach to assess the impact of elevated water temperature on two fishes of immediate conservation concern in a large estuary system, the threatened longfin smelt (Spirinchus thaleichthys) and endangered delta smelt (Hypomesus transpacificus). Abundances have reached record lows in California, USA, and these populations are at imminent risk of extirpation. California is currently impacted by a severe drought, resulting in high water temperatures, conditions that will become more common as a result of climate change. We exposed fish to environmentally relevant temperatures (14°C and 20°C) and used RNA sequencing to examine the transcriptome-wide responses to elevated water temperature in both species. Consistent with having a lower temperature tolerance, longfin smelt exhibited a pronounced cellular stress response, with an upregulation of heat shock proteins, after exposure to 20°C that was not observed in delta smelt. We detected an increase in metabolic rate in delta smelt at 20°C and increased expression of genes involved in metabolic processes and protein synthesis, patterns not observed in longfin smelt. Through examination of responses across multiple levels of biological organization, and by linking these responses to habitat distributions in the wild, we demonstrate that longfin smelt may be more susceptible than delta smelt to increases in temperatures, and they have little room to tolerate future warming in California. Understanding the species-specific physiological responses of sensitive species to environmental stressors is crucial for conservation efforts and managing aquatic systems globally.


Subject(s)
Droughts , Endangered Species , Estuaries , Osmeriformes/physiology , Temperature , Animals , California , Environment , Gene Expression Profiling , Gene Ontology , Oxygen Consumption/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Article in English | MEDLINE | ID: mdl-26880279

ABSTRACT

Regulation of internal ion homeostasis is essential for fishes inhabiting environments where salinities differ from their internal concentrations. It is hypothesized that selection will reduce energetic costs of osmoregulation in a population's native osmotic habitat, producing patterns of local adaptation. Killifish, Fundulus heteroclitus, occupy estuarine habitats where salinities range from fresh to seawater. Populations inhabiting an environmental salinity gradient differ in physiological traits associated with acclimation to acute salinity stress, consistent with local adaptation. Similarly, metabolic rates differ in populations adapted to different temperatures, but have not been studied in regard to salinity. We investigated evidence for local adaptation between populations of killifish native to fresh and brackish water habitats. Aerobic scope (the difference between minimum and maximum metabolic rates), excess post-exercise oxygen consumption, and swimming performance (time and distance to reach exhaustion) were used as proxies for fitness in fresh and brackish water treatments. Swimming performance results supported local adaptation; fish native to brackish water habitats performed significantly better than freshwater-native fish at high salinity while low salinity performance was similar between populations. However, results from metabolic measures did not support this conclusion; both populations showed an increase in resting metabolic rate and a decrease of aerobic scope in fresh water. Similarly, excess post-exercise oxygen consumption was higher for both populations in fresh than in brackish water. While swimming results suggest that environmentally dependent performance differences may be a result of selection in divergent osmotic environments, the differences between populations are not coupled with divergence in metabolic performance.


Subject(s)
Fundulidae/physiology , Osmoregulation/physiology , Adaptation, Physiological , Animals , Basal Metabolism , Body Weight , Ecosystem , Fresh Water , Maryland , Oxygen Consumption , Salinity , Seawater , Swimming
18.
Article in English | MEDLINE | ID: mdl-27095630

ABSTRACT

The objective of the current study was to investigate the effects of feed restriction on whole-organism upper thermal tolerance and the heat shock response of green and white sturgeon to determine how changes in food amount might influence physiological performance of each species when faced with temperature stress. Two parallel feed restriction trials were carried out for juvenile green (202g; 222-day post hatch: dph) and white sturgeon (205g; 197-dph) to manipulate nutritional status at 12.5%, 25%, 50%, or 100% of optimum feeding rate (100% OFR were 1.6% and 1.8% body weight/day, respectively) for four weeks. Following the trials, the critical thermal maximum (CTMax, 0.3°C/min) of sturgeon (N=12/treatment/species) was assessed as an indicator of whole-organism upper thermal tolerance. To assess temperature sensitivity, sturgeon (N=9/treatment/species) were acutely transferred to two temperature treatments (28°C and 18°C as a handling control) for 2h followed by 2h of recovery at 18°C before being sacrificed, and gill, brain, and mucus sampled for measurements of 70-kDa heat shock protein levels (Hsc/Hsp70). Feeding rate had species-specific effects on CTMax in green and white sturgeon such that CTMax of green sturgeon decreased as the magnitude of feed restriction increased; whereas, CTMax of white sturgeon did not change with feed restriction. Elevated temperature (28°C) and feed restriction increased Hsc/Hsp70 levels in the gill tissue of green sturgeon, while heat shock increased Hsc/Hsp70 levels in the mucus of white sturgeon. Our results suggest that green sturgeon may be more susceptible to temperature stress under food-limited conditions.


Subject(s)
Fishes/physiology , Heat-Shock Response/physiology , Animal Feed , Animals , Eating , Fish Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Temperature
19.
Arch Environ Contam Toxicol ; 71(2): 210-23, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27155869

ABSTRACT

Fishes in estuarine waters are frequently exposed to treated wastewater effluent, among numerous other sources of contaminants, yet the impacts of these anthropogenic chemicals are not well understood in these dynamic and important waterways. Inland silversides (Menidia beryllina) at an early stage of development [12 days posthatch (dph)] were exposed to waters from two estuarine wastewater-treatment outfall locations in a tidal estuary, the Sacramento/San Joaquin Delta (California, USA) that had varied hydrology and input volumes. The genomic response caused by endocrine-disrupting compounds (EDCs) in these waters was determined using quantitative polymerase chain reaction on a suite of hormonally regulated genes. Relative androgenic and estrogenic activities of the waters were measured using CALUX reporter bioassays. The presence of bifenthrin, a pyrethroid pesticide and known EDC, as well as caffeine and the anti-inflammatory pharmaceutical ibuprofen, which were used as markers of wastewater effluent input, were determined using instrumental analysis. Detectable levels of bifenthrin (2.89 ng L(-1)) were found on one of the sampling dates, and caffeine was found on all sampling dates, in water from the Boynton Slough. Neither compound was detected at the Carquinez Strait site, which has a much smaller effluent discharge input volume relative to the receiving water body size compared with Boynton Slough. Water samples from both sites incubated in the CALUX cell line induced estrogenic and androgenic activity in almost all instances, though the estrogenicity was relatively higher than the androgenicity. Changes in the abundance of mRNA transcripts of endocrine-responsive genes and indicators of general chemical stress were observed after a 96-h exposure to waters from both locations. The relative levels of endocrine response, changes in gene transcript abundance, and contaminant concentrations were greater in water from the Boynton Slough site despite those effluents undergoing a more advanced treatment process. The availability of a widely geographically distributed estuarine model species (M. beryllina) now allows for improved assessment of treated effluent impacts across brackish, estuarine, and marine environments.


Subject(s)
Environmental Monitoring , Estuaries , Fishes/physiology , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Animals , California , Endocrine Disruptors/toxicity , Gene Expression/drug effects , Waste Disposal, Fluid
20.
Mol Ecol ; 24(19): 4960-81, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26339983

ABSTRACT

Forecasting species' responses to climate change requires understanding the underlying mechanisms governing environmental stress tolerance, including acclimation capacity and acute stress responses. Current knowledge of these physiological processes in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. Yet many species of conservation concern exhibit tolerance windows and acclimation capacities in between these extremes. We linked transcriptome profiles to organismal tolerance in a mesothermal endangered fish, the delta smelt (Hypomesus transpacificus), to quantify the cellular processes, sublethal thresholds and effects of thermal acclimation on acute stress responses. Delta smelt initiated rapid molecular changes in line with expectations of theoretical thermal limitation models, but also exhibited diminished capacity to modify the expression of some genes and cellular mechanisms key to coping with acute thermal stress found in eurytherms. Sublethal critical thresholds occurred 4-6 °C below their upper tolerance limits, and thermal acclimation shifted the onset of acute thermal stress and tolerance as predicted. However, we found evidence that delta smelt's limited thermal plasticity may be partially due to an inability of individuals to effectively make physiological adjustments to truly achieve new homoeostasis under heightened temperatures, resulting in chronic thermal stress. These findings provide insight into the physiological basis of the diverse patterns of thermal tolerances observed in nature. Moreover, understanding how underlying molecular mechanisms shape thermal acclimation capacity, acute stress responses and ultimately differential phenotypes contributes to a predictive framework to deduce species' responses in situ to changes in selective pressures due to climate change.


Subject(s)
Acclimatization/genetics , Heat-Shock Response/genetics , Osmeriformes/genetics , Temperature , Transcriptome , Animals , Climate Change , Endangered Species , Larva/genetics , Larva/physiology , Molecular Sequence Data , Osmeriformes/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL