Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Trop Anim Health Prod ; 53(1): 98, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33415411

ABSTRACT

A mineral assessment study for dairy buffaloes, Nili-Ravi breed, was carried out seasonally at silvopasture farm at Sargodha, Pakistan. Sampling for soil, forage, and buffalo serum was done seasonally for a period of 1 year for mineral (P, Mg, Na, K, Ca) evaluation. In the study, experiments on forages showed significant differences in mean concentrations of Mg and P with changing seasons, whereas the values for Ca, Mg, Na, and K did not vary significantly. Three groups of buffaloes were checked for mineral concentration in blood serum, viz., calves, lactating and non-lactating. Ca mean concentration varied significantly for non-lactating buffaloes and calves between two seasons. Na mean level showed a significant difference for two sampling seasons among calves and lactating buffaloes. Mean level for Mg only differed significantly in serum of non-lactating buffaloes between the two seasons. Mean levels for Ca and P in soil and forage remained higher than the optimal level, whereas soil Na was below the critical level. K concentrations in soil and blood serum were above the critical level, while Mg levels remained below the optimal range in soil, forage, and blood serum. K concentration in forage remained below the optimal level. All buffalo categories displayed lower levels of Ca and P in serum. Na concentration in forage and serum exceeded the critical level. Furthermore, Ca yielded significant and positive correlation between soil and serum level, whereas K had significant but negative correlation for soil-forage and forage-serum. Overall, it was determined that P deficiency existed among buffaloes, which could be improved via supplementation. Similarly, K deficiency and Mg deficiency were exhibited for forage and soil respectively which could be countered through addition of fertilizers rich for these minerals. In brief, the mineral utilization of buffaloes is affected by reduced availability of essential nutrients and may result in lower productivity. It is suggested to add mineral supplementation in addition to natural diet of buffaloes to enhance the productivity of these animals.


Subject(s)
Animal Feed/analysis , Buffaloes/blood , Minerals/analysis , Soil/chemistry , Animals , Blood Chemical Analysis , Diet/veterinary , Female , Pakistan
2.
Biol Trace Elem Res ; 141(1-3): 126-30, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20526752

ABSTRACT

The present investigation was carried out to assess the transfer of copper element from the soil to forage plants consumed by the ruminants in two different pastures at the Livestock Experimental Station at Sargodha, Punjab, Pakistan. Soil and forage samples were collected periodically from two different pastures and analyzed after wet digestion. The survey of copper flow from forage from both pastures in the grazing period exhibited a consistent pattern of decrease from sampling periods 1 to 4 across all the sampling periods. In the legumes and grass pastures, it was decreased regularly and reduced up to 50% to that at the beginning across all the samplings. The copper concentration was higher in the legume pasture than that of grass pasture and sufficient to fulfill the requirement of grazing animals, while in grass pasture, it was higher at the first two sampling periods but dropped to a marginal deficient level at sampling period 3 and reached at the severe deficient level at the fourth sampling period during this investigation. The soil-plant transfer factor for Cu was higher in legume pasture compared to its counterpart. It was found that with the increase of forage maturity, a significant reduction in the forage Cu concentration was observed reaching its minimum level at the last sampling period in the grass pasture. These concentrations were within the marginal and severe deficient levels and provide for only 76% of the ruminant requirements. The naturally upset balance of Cu offers a potential hazard not only to both pastures, but also to the Cu status of grazing ruminants therein. This necessitates the provision of additional amount of Cu mixture in the nutrition of livestock for health and reproduction potential enhancement of the animals being reared at that farm. Supplementing the deficient mineral with locally available Cu feed sources like green fodders, cakes, and brans or providing region-specific mineral supplements would alleviate the deficiency of copper during the late season at the livestock farm.


Subject(s)
Copper/chemistry , Copper/metabolism , Plants/metabolism , Soil/chemistry , Climate , Ecosystem , Pakistan , Plants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL