Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Mikrochim Acta ; 191(7): 425, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38926184

ABSTRACT

A solvothermal synthesis of ultrasmall cerium oxide nanoparticles (USCeOxNPs) with an average size of 0.73 ± 0.07 nm using deep eutectic solvent (DES) as a stabilizing medium at a temperature of 90 ºC is reported. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to morphologically characterize the USCeOxNPs. These revealed approximately spherical shapes with emission lines characteristic of cerium. Selected area electron diffraction (SAED) was used to determine the crystalline structure of the cerium oxide nanoparticles (CeO2NPs), revealing the presence of crystalline cubic structures. The USCeOxNPs-DES/CB film was characterized by scanning electron microscopy (SEM), which demonstrated the spherical characteristic of CB with layers slightly covered by DES residues. DES was characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR), indicating its formation through hydrogen bonds between the precursors. An electrochemical sensor for dopamine (DA) determination in biological fluids was developed using the USCeOxNPs together with carbon black (CB). An enhanced current response was observed on DA voltammetric determination, and this can be attributed to the USCeOxNPs. This sensor displayed linear responses for DA in the range 5.0 × 10-7 mol L-1 to 3.2 × 10-4 mol L-1, with a limit of detection of 80 nmol L-1. Besides detectability, excellent performances were verified for repeatability and anti-interference. The sensor based on USCeOxNPs synthesized in DES in a simpler and environmentally friendly way was successfully applied to determine DA in biological matrix.


Subject(s)
Cerium , Dopamine , Electrochemical Techniques , Cerium/chemistry , Dopamine/analysis , Dopamine/blood , Electrochemical Techniques/methods , Humans , Deep Eutectic Solvents/chemistry , Nanoparticles/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Particle Size
2.
Mikrochim Acta ; 191(7): 375, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849611

ABSTRACT

The production, optimisation, physicochemical, and electroanalytical characterisation of a low-cost electrically conductive additive manufacturing filament made with recycled poly(lactic acid) (rPLA), castor oil, carbon black, and graphite (CB-G/PLA) is reported. Through optimising the carbon black and graphite loading, the best ratio for conductivity, low material cost, and printability was found to be 60% carbon black to 40% graphite. The maximum composition within the rPLA with 10 wt% castor oil was found to be an overall nanocarbon loading of 35 wt% which produced a price of less than £0.01 per electrode whilst still offering excellent low-temperature flexibility and reproducible printing. The additive manufactured electrodes produced from this filament offered excellent electrochemical performance, with a heterogeneous electron (charge) transfer rate constant, k0 calculated to be (2.6 ± 0.1) × 10-3 cm s-1 compared to (0.46 ± 0.03) × 10-3 cm s-1 for the commercial PLA benchmark. The additive manufactured electrodes were applied to the determination of ß-estradiol, achieving a sensitivity of 400 nA µM-1, a limit of quantification of 70 nM, and a limit of detection of 21 nM, which compared excellently to other reports in the literature. The system was then applied to the detection of ß-estradiol within four real water samples, including tap, bottled, river, and lake water, where recoveries between 95 and 109% were obtained. Due to the ability to create high-performance filament at a low material cost (£0.06 per gram) and through the use of more sustainable materials such as recycled polymers, bio-based plasticisers, and naturally occurring graphite, additive manufacturing will have a permanent place within the electroanalysis arsenal in the future.

3.
Mikrochim Acta ; 186(3): 174, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30771008

ABSTRACT

A carbon paste electrode (CPE) was modified with graphite oxide (GrO) and ß-cyclodextrin (CD) to obtain a sensor for simultaneous voltammetric determination of levodopa (LD), piroxicam (PRX), ofloxacin (OFX) and methocarbamol (MCB). The morphology, structure and electrochemical properties of the functionalized GrO were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle measurements and cyclic voltammetry. Under the optimal experimental conditions, the sensor is capable of detecting LD, PRX, OFX and MCB by square wave voltammetry (SWV) at working potentials of +0.40, +0.60, +1.03 and + 1.27 V (versus Ag/AgCl), respectively. Response is linear from 1.0 to 20 µM for LD, from 1.0 to 15 µM for PRX, from 1.0 to 20 µM for OFX, and from 1.0 to 50 µM for MCB. The respective limits of detection are 65, 105, 89 and 400 nM. The method was successfully applied to the simultaneous determination of LD, PRX, OFX and MCB in (spiked) real river water and synthetic urine samples, and the results were in agreement with those obtained using a spectrophotometric method, with recoveries close to 100%. Graphical abstract Schematic presentation of a novel electroanalytical method employing a carbon paste electrode modified with graphite oxide and ß-cyclodextrin for the simultaneous determination of levodopa, piroxicam, ofloxacin and methocarbamol in urine and river water samples by square wave voltammetry.


Subject(s)
Graphite/chemistry , Levodopa/urine , Methocarbamol/urine , Ofloxacin/urine , Piroxicam/urine , beta-Cyclodextrins/chemistry , Electrochemical Techniques/methods , Electrodes , Levodopa/chemistry , Limit of Detection , Methocarbamol/chemistry , Ofloxacin/chemistry , Oxides/chemistry , Piroxicam/chemistry , Reproducibility of Results , Rivers/chemistry
4.
Mikrochim Acta ; 186(3): 148, 2019 02 02.
Article in English | MEDLINE | ID: mdl-30712130

ABSTRACT

A glassy carbon electrode was modified with carbon black and CdTe quantum dots in a chitosan film to obtained a sensor for norfloxacin (NOR) in the presence of dopamine, caffeine, and uric acid. The morphological, structural and electrochemical characteristics of the nanostructured material were evaluated using spectrophotometry, X-ray diffraction, transmission electronic microscopy and voltammetry. The high electrochemical activity, fast electron transfer rate and high surface area enhanced the oxidation peak currents and shifted the peak potentials of NOR for more negative values (typically at 0.95 V vs. Ag/AgCl). Electrochemical determination of NOR was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV). Response is linear in the 0.2 to 7.4 µmol L-1 NOR concentration range, and the detection limit is as low as 6.6 nmol L-1. The method was successfully applied to the determination of norfloxacin in pharmaceutical formulation, synthetic urine and spiked serum. Graphical abstract Schematic presentation of a voltammetric method using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film for the determination of norfloxacin in serum and urine samples.


Subject(s)
Electrochemical Techniques/methods , Norfloxacin/analysis , Quantum Dots/chemistry , Cadmium Compounds , Carbon/chemistry , Chitosan , Electrodes , Limit of Detection , Norfloxacin/blood , Norfloxacin/urine , Tellurium
5.
Analyst ; 143(15): 3600-3606, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-29961795

ABSTRACT

In this paper, an alternative voltammetric method for the determination of elemental sulphur in cosmetic products is presented. It is based on the decrease of triphenylphosphine oxidation current in the presence of elemental sulphur by using a glassy carbon electrode. A solution of 2% (m/v) acetic acid and 0.6 mol L-1 sodium acetate in methanol was used as a supporting electrolyte. The experimental conditions for indirect determination of elemental sulphur were established. Using square-wave voltammetry, the analytical curve was linear in the elemental sulphur concentration range of 9.94-271 µmol L-1, with a detection limit of 2.59 µmol L-1. The method was successfully applied to determine elemental sulphur in soap bars and anti-acne cream, without any preliminary sample treatment, therefore, it is shortened and simplified. The results obtained with the indirect voltammetric method were not statistically different in comparison with a titrimetric one, at a 95% confidence level. Additionally, excellent recovery percentages were obtained, proving no matrix interferences.

6.
Analyst ; 139(7): 1762-8, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24496052

ABSTRACT

A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

7.
Analyst ; 139(21): 5614, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-26036757

ABSTRACT

Correction for 'Exploring the origins of the apparent "electrocatalytic" oxidation of kojic acid at graphene modified electrodes' by Luiz C. S. Figueiredo-Filho et al., Analyst, 2013, 138, 4436-4442.

8.
Analyst ; 139(16): 3961-7, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24919542

ABSTRACT

Voltammetric studies have been carried out using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and the ionic liquid 1-butyl-3-methylimidazolium chloride (IL). Studies on the electrochemical properties of GCEs modified with MWCNTs and IL within different polymeric films (dihexadecylphosphate (DHP), Nafion, and chitosan (CTS)) were performed using a [Fe(CN)6](4-/3-) electrochemical probe. The modified GCE with different polymeric films was also tested for ciprofibrate (CPF) sensing in the presence and absence of IL in the film. The presence of IL and the MWCNTs improved the electrochemical response for CPF in all cases due to a synergic effect, and the IL-MWCNTs-DHP/GCE showed a great voltammetric profile for CPF detection. The IL-MWCNTs-DHP/GCE and differential pulse voltammetry (DPV) were used for the determination of CPF. An analytical curve was obtained for CPF in the concentration range of 2.50 × 10(-7) to 7.41 × 10(-6) mol L(-1) with a detection limit of 9.20 × 10(-8) mol L(-1). The proposed DPV method was successfully applied for CPF determination in pharmaceutical samples, and the results obtained agree with the results obtained using a spectrophotometric method at a confidence level of 95%.

9.
Analyst ; 139(11): 2832-41, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24752746

ABSTRACT

A novel vertically aligned carbon nanotube/graphene oxide (VACNT-GO) electrode is proposed, and its ability to determine atorvastatin calcium (ATOR) in pharmaceutical and biological samples by differential pulse adsorptive stripping voltammetry (DPAdSV) is evaluated. VACNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method and then treated with oxygen plasma to produce the VACNT-GO electrode. The oxygen plasma treatment exfoliates the carbon nanotube tips exposing graphene foils and inserting oxygen functional groups, these effects improved the VACNT wettability (super-hydrophobic) which is crucial for its electrochemical application. The electrochemical behaviour of ATOR on the VACNT-GO electrode was studied by cyclic voltammetry, which showed that it underwent an irreversible oxidation process at a potential of +1.08 V in pHcond 2.0 (0.2 mol L(-1) buffer phosphate solution). By applying DPAdSV under optimized experimental conditions the analytical curve was found to be linear in the ATOR concentration range of 90 to 3.81 × 10(3) nmol L(-1) with a limit of detection of 9.4 nmol L(-1). The proposed DPAdSV method was successfully applied in the determination of ATOR in pharmaceutical and biological samples, and the results were in close agreement with those obtained by a comparative spectrophotometric method at a confidence level of 95%.


Subject(s)
Electrodes , Graphite/chemistry , Heptanoic Acids/analysis , Nanotubes, Carbon , Pyrroles/analysis , Adsorption , Atorvastatin , Hydrogen-Ion Concentration , Kinetics , Limit of Detection , Microscopy, Electron, Scanning , Oxides/chemistry , Pharmaceutical Preparations/chemistry
10.
Analyst ; 139(11): 2842-9, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24733185

ABSTRACT

A simple and highly selective electrochemical method was developed for the single or simultaneous determination of dopamine (DA) and epinephrine (EP) in human body fluids using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film using square-wave voltammetry (SWV) or differential-pulse voltammetry (DPV). Using DPV with the proposed electrode, a separation of ca. 360 mV between the peak reduction potentials of DA and EP present in binary mixtures was obtained. The analytical curves for the simultaneous determination of dopamine and epinephrine showed an excellent linear response, ranging from 7.0 × 10(-8) to 4.8 × 10(-6) and 3.0 × 10(-7) to 9.5 × 10(-6) mol L(-1) for DA and EP, respectively. The detection limits for the simultaneous determination of DA and EP were 5.0 × 10(-8) mol L(-1) and 8.2 × 10(-8) mol L(-1), respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in human body fluid samples of cerebrospinal fluid, human serum and lung fluid.


Subject(s)
Body Fluids/chemistry , Dopamine/analysis , Electrodes , Epinephrine/analysis , Metal Nanoparticles , Nanotubes, Carbon , Nickel/chemistry , Organophosphates/chemistry , Humans , Microscopy, Electron, Scanning
11.
Anal Methods ; 16(33): 5676-5683, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39118596

ABSTRACT

In this study, we describe a rapid and high-throughput smartphone-based digital colorimetric method for determining urea in milk. A compact and cost-effective 3D-printed image box microplate-based system was designed to measure multiple samples simultaneously, using minimal sample and reagent volumes. The apparatus was applied for the quantification of urea in milk based on its reaction with p-dimethylaminobenzaldehyde (DMAB). The predictive performance of calibration was evaluated using RGB and different colour models (CMYK, HSV, and CIELAB), with the average blue (B) values of the RGB selected as the analytical signal for urea quantification. Under optimized conditions, a urea concentration linear range from 50 to 400 mg L-1 was observed, with a limit of detection (LOD) of 15 mg L-1. The values found with the smartphone-based DIC procedure are in good agreement with spectrophotometric (spectrophotometer and microplate treader) and reference method (mid-infrared spectroscopy) values. This proposed approach offers an accessible and efficient solution for digital image colorimetry, with potential applications for various target analytes in milk and other fields requiring high-throughput colorimetric analysis.


Subject(s)
Colorimetry , Milk , Printing, Three-Dimensional , Smartphone , Urea , Milk/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Animals , Urea/analysis , Urea/chemistry , Limit of Detection , Benzaldehydes/chemistry , Benzaldehydes/analysis
12.
Analyst ; 138(4): 1053-9, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23293786

ABSTRACT

We present the electroanalytical sensing of atropine using disposable and economic screen printed graphite sensors. The electroanalytical determination of atropine is found to be possible over the concentration range of 5 µM to 50 µM with a detection limit of 3.9 µM (based on 3-sigma) found to be possible. We demonstrate proof-of-concept that this approach provides a rapid and inexpensive sensing strategy for determining the molecule of murder atropine in diet Coca-Cola samples.


Subject(s)
Atropine/analysis , Electrochemical Techniques/methods , Forensic Sciences/methods , Atropine/chemistry
13.
Analyst ; 138(16): 4436-42, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23748961

ABSTRACT

We explore the recent reports that the use of graphene modified electrodes gives rise to the electrocatalytic oxidation of kojic acid. It is demonstrated that large quantifiable voltammetric signatures are observed on bare/unmodified graphitic electrodes, which are shown to be analytically useful and superior to those observed at graphene modified alternatives. This work is of importance as it shows that control experiments are critical and must be undertaken before "electrocatalysis" is conferred when investigating graphene in electrochemistry. In terms of the electroanalytical response of graphene modified electrodes, a bare edge plane pyrolytic graphite electrode is shown to give rise to an improved linear range and limit of detection, questioning the need to modify electrodes with graphene.

14.
Analyst ; 138(21): 6354-64, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24010127

ABSTRACT

We report the fabrication, characterisation (SEM, TEM, XPS and Raman spectroscopy) and electrochemical implementation of a graphene paste electrode. The paste electrodes utilised are constructed by simply mixing graphene with mineral oil (which acts as a binder) prior to loading the resultant paste into a piston-driven polymeric-tubing electrode-shell, where this electrode configuration allows for rapid renewal of the electrode surface. The fabricated paste electrode is electrochemically characterised using both inner-sphere and outer-sphere redox probes, namely potassium ferrocyanide(ii), hexaammine-ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, l-ascorbic acid (AA) and uric acid (UA). Comparisons are made with a graphite paste alternative and the benefits of graphene implementation as a paste electrode within electrochemistry are explored, as well as the characterisation of their electroanalytical performances. We reveal no observable differences in the electrochemical performance and thus suggest that there are no advantages of using graphene over graphite in the fabrication of paste electrodes. Such work is highly important and informative for those working in the field of electroanalysis where electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing the laboratory into the field), with particular relevance to those searching for new electrode materials.

15.
Anal Methods ; 15(8): 1077-1086, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36752550

ABSTRACT

The versatility of chitosan (Ch) biopolymer as a metallic nanoparticle stabilizing agent and excellent former of thin films on glassy carbon was explored in this work for the sustainable manufacture of novel electrochemical sensors based on carbon black (CB) and chitosan-stabilized platinum nanoparticles (Ch-PtNPs). Platinum nanoparticles highly stabilized by chitosan were easily synthesized at room temperature and characterized by HR-TEM, UV-vis, and voltammetry. Ch-PtNPs presented an average diameter of 2.7 nm, and typical voltammetric peaks of Pt in sulfuric acid medium were detected for films containing Ch-PtNPs. As a proof of concept, the CB-Ch-PtNP electrode was applied in the determination of hydrogen peroxide (H2O2) and the endocrine disruptor bisphenol A (BPA). Pronounced electrocatalytic activity towards H2O2 reduction was observed in the presence of Ch-PtNPs in the films, guaranteeing the non-enzymatic determination of H2O2 by chronoamperometry, with a limit of detection of 10 µmol L-1. In the determination of BPA by differential pulse adsorptive anodic stripping voltammetry (DPAdASV), under optimal experimental conditions, a wide linear response range and a limit of detection at the nanomolar level (7.9 nmol L-1) were achieved. In addition, excellent repeatabilities of sensor response and sensor fabrication, and accuracy in the analysis of natural water samples were obtained.

16.
Biosensors (Basel) ; 13(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504089

ABSTRACT

The present study reports the development and application of a flow injection analysis (FIA) system for the simultaneous determination of uric acid (UA) and caffeine (CAF) using cathodically pretreated boron-doped diamond electrode (CPT-BDD) and multiple-pulse amperometry (MPA). The electrochemical profiles of UA and CAF were analyzed via cyclic voltammetry in the potential range of 0.20-1.7 V using 0.10 mol L-1 H2SO4 solution as supporting electrolyte. Under optimized conditions, two oxidation peaks at potentials of 0.80 V (UA) and 1.4 V (CAF) were observed; the application of these potentials using multiple-pulse amperometry yielded concentration linear ranges of 5.0 × 10-8-2.2 × 10-5 mol L-1 (UA) and 5.0 × 10-8-1.9 × 10-5 mol L-1 (CAF) and limits of detection of 1.1 × 10-8 and 1.3 × 10-8 mol L-1 for UA and CAF, respectively. The proposed method exhibited good repeatability and stability, and no interference was detected in the electrochemical signals of UA and CAF in the presence of glucose, NaCl, KH2PO4, CaCl2, urea, Pb, Ni, and Cd. The application of the FIA-MPA method for the analysis of environmental samples resulted in recovery rates ranging between 98 and 104%. The results obtained showed that the BDD sensor exhibited a good analytical performance when applied for CAF and UA determination, especially when compared to other sensors reported in the literature.


Subject(s)
Caffeine , Uric Acid , Caffeine/analysis , Oxidation-Reduction , Electrodes , Electrochemical Techniques/methods
17.
Biosensors (Basel) ; 13(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979591

ABSTRACT

A sensitive and selective label-free photoelectrochemical (PEC) immunosensor was designed for the detection of cardiac troponin I (cTnI). The platform was based on a fluorine-doped tin oxide (FTO)-coated glass photoelectrode modified with bismuth vanadate (BiVO4) and sensitized by an electrodeposited bismuth sulfide (Bi2S3) film. The PEC response of the Bi2S3/BiVO4/FTO platform for the ascorbic acid (AA) donor molecule was approximately 1.6-fold higher than the response observed in the absence of Bi2S3. The cTnI antibodies (anti-cTnI) were immobilized on the Bi2S3/BiVO4/FTO platform surface to produce the anti-cTnI/Bi2S3/BiVO4/FTO immunosensor, which was incubated in cTnI solution to inhibit the AA photocurrent. The photocurrent obtained by the proposed immunosensor presented a linear relationship with the logarithm of the cTnI concentration, ranging from 1 pg mL-1 to 1000 ng mL-1. The immunosensor was successfully employed in artificial blood plasma samples for the detection of cTnI, with recovery values ranging from 98.0% to 98.5%.


Subject(s)
Biosensing Techniques , Myocardial Infarction , Humans , Limit of Detection , Electrochemical Techniques , Troponin I , Fluorine , Immunoassay , Electrodes , Myocardial Infarction/diagnosis , Biomarkers
18.
Talanta ; 236: 122881, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34635261

ABSTRACT

For the first time carbon black based electrode modified with paraffin was applied as a sensor on voltammetry of immobilized microparticles (VIMP) approach for determination of lead solid residues in hair dye samples. The solid microparticles of Pb(II) (Pb(CH3COO)2(s)) immobilized into the carbon paste sensor containing carbon black and paraffin were firstly reduced at initial potentials and further reoxidized at around -0.60 V during anodic scan. Electroanalytical parameters as well as supporting electrolyte composition, and pH were also evaluated. An analytical curve in 0.2 mol L-1 phosphate buffer solution (pH 5.0) from 0.04 to 3.2 µg (R2 = 0.999) with detection and quantification limits of 4 and 13 ng, respectively, were achieved. The method was applied to quantify lead solid residues in hair dye samples without previous mineralization or complex sample pre-treatment. Besides adequate repeatability, stability and selectivity of the developed sensor based on VIMP features, the method using carbon black based sensor was considered advantageous comparing to the results recorded by a spectrometric method (relative error lower than 8%) from several analytical viewpoints.


Subject(s)
Soot , Electrodes
19.
Anal Methods ; 14(20): 2003-2013, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35543344

ABSTRACT

The present study reports the synthesis and characterization of hydrophobic deep eutectic solvents (HDES) based on fatty acids and tetrabutylammonium bromide (TBAB) or 1-octanol using Fourier transform infrared spectroscopy, and the analysis of the physicochemical properties (viscosity, density, electrical conductivity, and water content) of these solvents. A carbon paste electrode modified with 6.0% (m/m) decanoic acid and TBAB-based HDES was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The oxidation peak currents of the proposed electrode were enhanced by its high electrochemical activity, fast electron transfer rate, and high surface area, while a remarkable decrease was observed in the peak potential separation. The electrochemical determination of hydroquinone (H2Q) was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV). The electrode response was found to be linear in the H2Q concentration range of 2.5 × 10-6-3.0 × 10-3 mol L-1, with the limit of detection (LOD) of 7.7 × 10-7 mol L-1. The method was successfully applied for H2Q determination in dermatological creams.


Subject(s)
Carbon , Hydroquinones , Carbon/chemistry , Deep Eutectic Solvents , Electrochemical Techniques/methods , Electrodes , Hydroquinones/analysis , Solvents
20.
Anal Methods ; 14(39): 3859-3866, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36129055

ABSTRACT

A new electrode was prepared based on functionalized graphene and gold nanoparticles dispersed in a chitosan film. Such an electrochemical sensor determines ofloxacin in the presence of dopamine, paracetamol, and caffeine. Characterization (morphological and electrochemical) was done using scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The sensor design improved the analytical signal, the electrochemical activity, and the electron transfer rate. Ofloxacin was determined by square-wave voltammetry, with a linear concentration range of 0.10-4.9 µmol L-1 (r = 0.999, LOD = 12 nmol L-1). The proposed sensor showed good repeatability and selectivity and was applied successfully to the determination of ofloxacin in pharmaceutical formulations, synthetic urine, and water river samples. The proposed method proved to be excellent; therefore, it is an alternative method for the determination of ofloxacin.


Subject(s)
Chitosan , Graphite , Metal Nanoparticles , Acetaminophen , Caffeine/chemistry , Carbon/chemistry , Dopamine , Electrodes , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Ofloxacin , Pharmaceutical Preparations , Water
SELECTION OF CITATIONS
SEARCH DETAIL