Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Biol Chem ; 295(39): 13556-13569, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32727849

ABSTRACT

Mutations in the galactosidase ß 1 (GLB1) gene cause lysosomal ß-galactosidase (ß-Gal) deficiency and clinical onset of the neurodegenerative lysosomal storage disease, GM1 gangliosidosis. ß-Gal and neuraminidase 1 (NEU1) form a multienzyme complex in lysosomes along with the molecular chaperone, protective protein cathepsin A (PPCA). NEU1 is deficient in the neurodegenerative lysosomal storage disease sialidosis, and its targeting to and stability in lysosomes strictly depend on PPCA. In contrast, ß-Gal only partially depends on PPCA, prompting us to investigate the role that ß-Gal plays in the multienzyme complex. Here, we demonstrate that ß-Gal negatively regulates NEU1 levels in lysosomes by competitively displacing this labile sialidase from PPCA. Chronic cellular uptake of purified recombinant human ß-Gal (rhß-Gal) or chronic lentiviral-mediated GLB1 overexpression in GM1 gangliosidosis patient fibroblasts coincides with profound secondary NEU1 deficiency. A regimen of intermittent enzyme replacement therapy dosing with rhß-Gal, followed by enzyme withdrawal, is sufficient to augment ß-Gal activity levels in GM1 gangliosidosis patient fibroblasts without promoting NEU1 deficiency. In the absence of ß-Gal, NEU1 levels are elevated in the GM1 gangliosidosis mouse brain, which are restored to normal levels following weekly intracerebroventricular dosing with rhß-Gal. Collectively, our results highlight the need to carefully titrate the dose and dosing frequency of ß-Gal augmentation therapy for GM1 gangliosidosis. They further suggest that intermittent intracerebroventricular enzyme replacement therapy dosing with rhß-Gal is a tunable approach that can safely augment ß-Gal levels while maintaining NEU1 at physiological levels in the GM1 gangliosidosis brain.


Subject(s)
Enzyme Replacement Therapy , Fibroblasts/enzymology , Lysosomes/enzymology , Mucolipidoses , beta-Galactosidase/therapeutic use , Animals , CHO Cells , Cricetulus , Humans , Lysosomes/genetics , Mice , Mice, Mutant Strains , Mucolipidoses/drug therapy , Mucolipidoses/enzymology , Mucolipidoses/genetics , Neuraminidase/genetics , Neuraminidase/metabolism
2.
Am J Physiol Endocrinol Metab ; 319(4): E667-E677, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32799658

ABSTRACT

MicroRNA-30a (miR-30a) impacts adipocyte function, and its expression in white adipose tissue (WAT) correlates with insulin sensitivity in obesity. Bioinformatic analysis demonstrates that miR-30a expression contributes to 2% of all miRNA expression in human tissues. However, molecular mechanisms of miR-30a function in fat cells remain unclear. Here, we expanded our understanding of how miR-30a expression contributes to antidiabetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity and metabolic functions in adipocytes. We found that WAT isolated from diabetic patients shows reduced miR-30a levels and diminished expression of the canonical PPARγ target genes ADIPOQ and FABP4 relative to lean counterparts. In human adipocytes, miR-30a required PPARγ for maximal expression, and the PPARγ agonist rosiglitazone robustly induced miR-30a but not other miR-30 family members. Transcriptional activity studies in human adipocytes also revealed that ectopic expression of miR-30a enhanced the activity of rosiglitazone coupled with higher expression of fatty acid and glucose metabolism markers. Diabetic mice that overexpress ectopic miR-30a in subcutaneous WAT display durable reductions in serum glucose and insulin levels for more than 30 days. In agreement with our in vitro findings, RNA-seq coupled with Gene Set Enrichment Analysis (GSEA) suggested that miR-30a enabled activation of the beige fat program in vivo, as evidenced by enhanced mitochondrial biogenesis and induction of UCP1 expression. Metabolomic and gene expression profiling established that the long-term effects of ectopic miR-30a expression enable accelerated glucose metabolism coupled with subcutaneous WAT hyperplasia. Together, we establish a putative role of miR-30a in mediating PPARγ activity and advancing metabolic programs of white to beige fat conversion.


Subject(s)
Adipocytes, Brown/physiology , Gene Regulatory Networks/genetics , MicroRNAs/physiology , Adipocytes, White/metabolism , Animals , Blood Glucose/metabolism , Cells, Cultured , Fatty Acid-Binding Proteins/metabolism , Humans , Hypoglycemic Agents/pharmacology , Insulin Resistance/genetics , Metabolomics , Mice , MicroRNAs/genetics , Oligopeptides/metabolism , Organelle Biogenesis , PPAR gamma/agonists , Rosiglitazone/pharmacology
4.
Res Sq ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260478

ABSTRACT

N-acetylaspartate (NAA), the brain's second most abundant metabolite, provides essential substrates for myelination through its hydrolysis. However, activities and physiological roles of NAA in other tissues remain unknown. Here, we show aspartoacylase (ASPA) expression in white adipose tissue (WAT) governs systemic NAA levels for postprandial body temperature regulation. Proteomics and mass spectrometry revealed NAA accumulation in WAT of Aspa knockout mice stimulated the pentose phosphate pathway and pyrimidine production. Stable isotope tracing confirmed higher incorporation of glucose-derived carbon into pyrimidine metabolites in Aspa knockout cells. Additionally, serum NAA positively correlates with the pyrimidine intermediate orotidine and this relationship predicted lower body mass index in humans. Using whole-body and tissue-specific knockout mouse models, we demonstrate that fat cells provided plasma NAA and suppressed postprandial body temperature elevation. Furthermore, exogenous NAA supplementation reduced body temperature. Our study unveils WAT-derived NAA as an endocrine regulator of postprandial body temperature and physiological homeostasis.

5.
Elife ; 122023 Jul 07.
Article in English | MEDLINE | ID: mdl-37417957

ABSTRACT

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.


Subject(s)
Glucose , Non-alcoholic Fatty Liver Disease , Mice , Animals , Glucose/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Flavin-Adenine Dinucleotide/metabolism , Fatty Acids/metabolism , Liver/metabolism , Fasting/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidation-Reduction , Flavoproteins/metabolism
6.
Cell Metab ; 34(12): 1932-1946.e7, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36243005

ABSTRACT

Low-grade, sustained inflammation in white adipose tissue (WAT) characterizes obesity and coincides with type 2 diabetes mellitus (T2DM). However, pharmacological targeting of inflammation lacks durable therapeutic effects in insulin-resistant conditions. Through a computational screen, we discovered that the FDA-approved rheumatoid arthritis drug auranofin improved insulin sensitivity and normalized obesity-associated abnormalities, including hepatic steatosis and hyperinsulinemia in mouse models of T2DM. We also discovered that auranofin accumulation in WAT depleted inflammatory responses to a high-fat diet without altering body composition in obese wild-type mice. Surprisingly, elevated leptin levels and blunted beta-adrenergic receptor activity achieved by leptin receptor deletion abolished the antidiabetic effects of auranofin. These experiments also revealed that the metabolic benefits of leptin reduction were superior to immune impacts of auranofin in WAT. Our studies uncover important metabolic properties of anti-inflammatory treatments and contribute to the notion that leptin reduction in the periphery can be accomplished to treat obesity and T2DM.


Subject(s)
Arthritis, Rheumatoid , Diabetes Mellitus, Type 2 , Animals , Mice , Mice, Obese , Hypoglycemic Agents , Auranofin/pharmacology , Auranofin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Arthritis, Rheumatoid/drug therapy , Obesity/drug therapy
7.
Trends Endocrinol Metab ; 32(5): 320-332, 2021 05.
Article in English | MEDLINE | ID: mdl-33712368

ABSTRACT

White adipose tissue (WAT) depends on coordinated regulation of transcriptional and metabolic pathways to respond to whole-body energy demands. We highlight metabolites that contribute to biosynthetic reactions for WAT expansion. Recent studies have precisely defined how byproducts of carbohydrate and lipid metabolism affect physiological and endocrine functions in adipocytes. We emphasize the critical emerging roles of short-chain fatty acids (SCFAs) and tricarboxylic acid (TCA) cycle metabolites that connect lipogenesis to WAT energy balance and endocrine functions. These insights address how adipocytes use small molecules generated from central carbon metabolism to measure responses to nutritional stress.


Subject(s)
Acetyl Coenzyme A , Adipose Tissue, White , Acetyl Coenzyme A/metabolism , Adipocytes/metabolism , Adipose Tissue, White/metabolism , Animals , Humans , Lipid Metabolism
8.
Mol Metab ; 48: 101221, 2021 06.
Article in English | MEDLINE | ID: mdl-33771728

ABSTRACT

OBJECTIVE: White adipose tissue (WAT) expansion regulates energy balance and overall metabolic homeostasis. The absence or loss of WAT occurring through lipodystrophy and lipoatrophy contributes to the development of hepatic steatosis and insulin resistance. We previously demonstrated that sole small ubiquitin-like modifier (SUMO) E2-conjugating enzyme Ube2i represses human adipocyte differentiation. The role of Ube2i during WAT development remains unknown. METHODS: To determine how Ube2i impacts body composition and energy balance, we generated adipocyte-specific Ube2i knockout mice (Ube2ia-KO). CRISPR/Cas9 gene editing inserted loxP sites flanking exons 3 and 4 at the Ube2i locus. Subsequent genetic crosses to Adipoq-Cre transgenic mice allowed deletion of Ube2i in white and brown adipocytes. We measured multiple metabolic endpoints that describe energy balance and carbohydrate metabolism in Ube2ia-KO and littermate controls during postnatal growth. RESULTS: Surprisingly, Ube2ia-KO mice developed hyperinsulinemia and hepatic steatosis. Global energy balance defects emerged from dysfunctional WAT marked by pronounced local inflammation, loss of serum adipokines, hepatomegaly, and near absence of major adipose tissue depots. We observed progressive lipoatrophy that commences in the early adolescent period. CONCLUSIONS: Our results demonstrate that Ube2i expression in mature adipocytes allows WAT expansion during postnatal growth. Deletion of Ube2i in fat cells compromises and diminishes adipocyte function that induces WAT inflammation and ectopic lipid accumulation in the liver. Our findings reveal an indispensable role for Ube2i during white adipocyte expansion and endocrine control of energy balance.


Subject(s)
Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Gene Deletion , Hyperinsulinism/complications , Hyperinsulinism/metabolism , Lipodystrophy/complications , Lipodystrophy/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Adipokines/blood , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Body Composition/genetics , Energy Metabolism/genetics , Female , Hyperinsulinism/genetics , Insulin Resistance/genetics , Lipodystrophy/genetics , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics
9.
Sci Rep ; 10(1): 569, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31953414

ABSTRACT

Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by the presence of intracellular aggregates of tau protein and neuronal loss leading to cognitive and motor impairment. Occurrence is mostly sporadic, but rare family clusters have been described. Although the etiopathology of PSP is unknown, mutations in the MAPT/tau gene and exposure to environmental toxins can increase the risk of PSP. Here, we used cell models to investigate the potential neurotoxic effects of heavy metals enriched in a highly industrialized region in France with a cluster of sporadic PSP cases. We found that iPSC-derived iNeurons from a MAPT mutation carrier tend to be more sensitive to cell death induced by chromium (Cr) and nickel (Ni) exposure than an isogenic control line. We hypothesize that genetic variations may predispose to neurodegeneration induced by those heavy metals. Furthermore, using an SH-SY5Y neuroblastoma cell line, we showed that both heavy metals induce cell death by an apoptotic mechanism. Interestingly, Cr and Ni treatments increased total and phosphorylated tau levels in both cell types, implicating Cr and Ni exposure in tau pathology. Overall, this study suggests that chromium and nickel could contribute to the pathophysiology of tauopathies such as PSP by promoting tau accumulation and neuronal cell death.


Subject(s)
Metals, Heavy/toxicity , Neurons/cytology , Supranuclear Palsy, Progressive/genetics , tau Proteins/genetics , tau Proteins/metabolism , Cell Death , Cell Line , Cell Survival/drug effects , Chromium/toxicity , France , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurons/drug effects , Neurons/metabolism , Nickel/toxicity , Supranuclear Palsy, Progressive/chemically induced , Supranuclear Palsy, Progressive/metabolism
10.
Diabetes ; 69(12): 2630-2641, 2020 12.
Article in English | MEDLINE | ID: mdl-32994273

ABSTRACT

Obesity fosters low-grade inflammation in white adipose tissue (WAT) that may contribute to the insulin resistance that characterizes type 2 diabetes. However, the causal relationship of these events remains unclear. The established dominance of STAT1 function in the immune response suggests an obligate link between inflammation and the comorbidities of obesity. To this end, we sought to determine how STAT1 activity in white adipocytes affects insulin sensitivity. STAT1 expression in WAT inversely correlated with fasting plasma glucose in both obese mice and humans. Metabolomic and gene expression profiling established STAT1 deletion in adipocytes (STAT1 a-KO ) enhanced mitochondrial function and accelerated tricarboxylic acid cycle flux coupled with reduced fat cell size in subcutaneous WAT depots. STAT1 a-KO reduced WAT inflammation, but insulin resistance persisted in obese mice. Rather, elimination of type I cytokine interferon-γ activity enhanced insulin sensitivity in diet-induced obesity. Our findings reveal a permissive mechanism that bridges WAT inflammation to whole-body insulin sensitivity.


Subject(s)
Adipose Tissue/metabolism , Gene Expression Regulation/physiology , Inflammation/metabolism , Insulin Resistance/physiology , STAT1 Transcription Factor/metabolism , Adipocytes/metabolism , Animals , Energy Metabolism/genetics , Energy Metabolism/physiology , Female , Glucose/metabolism , Homeostasis/physiology , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , RNA Interference , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , STAT1 Transcription Factor/genetics , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL