Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 516
Filter
1.
Cell ; 159(5): 1140-1152, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416951

ABSTRACT

Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.


Subject(s)
Circadian Rhythm , Enhancer Elements, Genetic , Gene Expression Regulation , Transcription, Genetic , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Circadian Clocks , Liver/metabolism , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
2.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37477088

ABSTRACT

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Subject(s)
Colorectal Neoplasms , Interleukin-6 , Humans , Interleukin-6/adverse effects , Interleukin-6/metabolism , Phosphorylation , beta Catenin/metabolism , Wnt Signaling Pathway , Janus Kinase 2/metabolism , Colorectal Neoplasms/genetics , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
4.
Nature ; 566(7742): 79-84, 2019 02.
Article in English | MEDLINE | ID: mdl-30675062

ABSTRACT

Metabotropic glutamate receptors are family C G-protein-coupled receptors. They form obligate dimers and possess extracellular ligand-binding Venus flytrap domains, which are linked by cysteine-rich domains to their 7-transmembrane domains. Spectroscopic studies show that signalling is a dynamic process, in which large-scale conformational changes underlie the transmission of signals from the extracellular Venus flytraps to the G protein-coupling domains-the 7-transmembrane domains-in the membrane. Here, using a combination of X-ray crystallography, cryo-electron microscopy and signalling studies, we present a structural framework for the activation mechanism of metabotropic glutamate receptor subtype 5. Our results show that agonist binding at the Venus flytraps leads to a compaction of the intersubunit dimer interface, thereby bringing the cysteine-rich domains into close proximity. Interactions between the cysteine-rich domains and the second extracellular loops of the receptor enable the rigid-body repositioning of the 7-transmembrane domains, which come into contact with each other to initiate signalling.


Subject(s)
Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction , Allosteric Regulation , Cryoelectron Microscopy , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Humans , Ligands , Models, Molecular , Protein Domains , Protein Stability , Receptor, Metabotropic Glutamate 5/ultrastructure
5.
Mol Ther ; 32(4): 890-909, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38369751

ABSTRACT

Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Inflammatory Bowel Diseases , Nanoparticles , Animals , Humans , Colitis-Associated Neoplasms/complications , Colitis-Associated Neoplasms/drug therapy , Colitis-Associated Neoplasms/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/etiology , Anti-Inflammatory Agents/pharmacology , Macrophages/metabolism , Colitis/etiology , Colitis/complications , Mammals
6.
Proc Natl Acad Sci U S A ; 119(13): e2116506119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333651

ABSTRACT

SignificanceTirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization. We report how cryogenic electron microscopy and molecular dynamics simulations inform the structural basis for the unique pharmacology of tirzepatide. These studies reveal the extent to which fatty acid modification, combined with amino acid sequence, determines the mode of action of a multireceptor agonist.


Subject(s)
Diabetes Mellitus, Type 2 , Receptors, Gastrointestinal Hormone , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Incretins/pharmacology , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/therapeutic use
7.
Genes Dev ; 31(12): 1202-1211, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28747429

ABSTRACT

Liver lipid metabolism is under intricate temporal control by both the circadian clock and feeding. The interplay between these two mechanisms is not clear. Here we show that liver-specific depletion of nuclear receptors RORα and RORγ, key components of the molecular circadian clock, up-regulate expression of lipogenic genes only under fed conditions at Zeitgeber time 22 (ZT22) but not under fasting conditions at ZT22 or ad libitum conditions at ZT10. RORα/γ controls circadian expression of Insig2, which keeps feeding-induced SREBP1c activation under check. Loss of RORα/γ causes overactivation of the SREBP-dependent lipogenic response to feeding, exacerbating diet-induced hepatic steatosis. These findings thus establish ROR/INSIG2/SREBP as a molecular pathway by which circadian clock components anticipatorily regulate lipogenic responses to feeding. This highlights the importance of time of day as a consideration in the treatment of liver metabolic disorders.


Subject(s)
Circadian Clocks/genetics , Gene Expression Regulation , Lipogenesis/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Animals , Feeding Behavior/physiology , Gene Knockout Techniques , Lipid Metabolism/genetics , Liver/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Transcriptional Activation
8.
Nat Immunol ; 13(12): 1187-95, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23104097

ABSTRACT

Interleukin 15 (IL-15) and IL-2 have distinct immunological functions even though both signal through the receptor subunit IL-2Rß and the common γ-chain (γ(c)). Here we found that in the structure of the IL-15-IL-15Rα-IL-2Rß-γ(c) quaternary complex, IL-15 binds to IL-2Rß and γ(c) in a heterodimer nearly indistinguishable from that of the IL-2-IL-2Rα-IL-2Rß-γ(c) complex, despite their different receptor-binding chemistries. IL-15Rα substantially increased the affinity of IL-15 for IL-2Rß, and this allostery was required for IL-15 trans signaling. Consistent with their identical IL-2Rß-γ(c) dimer geometries, IL-2 and IL-15 showed similar signaling properties in lymphocytes, with any differences resulting from disparate receptor affinities. Thus, IL-15 and IL-2 induced similar signals, and the cytokine specificity of IL-2Rα versus IL-15Rα determined cellular responsiveness. Our results provide new insights for the development of specific immunotherapeutics based on IL-15 or IL-2.


Subject(s)
Interleukin-15/immunology , Interleukin-2/immunology , Animals , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Humans , Interleukin-15/chemistry , Interleukin-15/metabolism , Interleukin-2/chemistry , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-2 Receptor beta Subunit/metabolism , Ligands , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Signal Transduction
9.
Bioorg Med Chem Lett ; 102: 129659, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38373465

ABSTRACT

Depletion of cellular levels of geranylgeranyl diphosphate by inhibition of the enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential strategy for disruption of protein transport by limiting the geranylgeranylation of the Rab proteins that regulate intracellular trafficking. As such, there is interest in the development of GGDPS inhibitors for the treatment of malignancies characterized by abnormal protein production, including multiple myeloma. Our previous work has explored the structure-function relationship of a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, with modifications having impact on enzymatic, cellular and in vivo activities. We have synthesized a new series of α-amino bisphosphonates to understand the impact of modifying the alpha position with a moiety that is potentially linkable to other agents. Bioassays evaluating the enzymatic and cellular activities of these compounds demonstrate that incorporation of the α-amino group affords compounds with GGDPS inhibitory activity which is modulated by isoprenoid tail chain length and olefin stereochemistry. These studies provide further insight into the complexity of the structure-function relationship and will enable future efforts focused on tumor-specific drug delivery.


Subject(s)
Diphosphonates , Enzyme Inhibitors , Diphosphonates/pharmacology , Diphosphonates/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Farnesyltranstransferase , Triazoles/chemistry , Terpenes/chemistry
10.
Mol Cell Neurosci ; 124: 103821, 2023 03.
Article in English | MEDLINE | ID: mdl-36775184

ABSTRACT

BACKGROUND: As a non-competitive N-methyl d-aspartate receptor antagonist, ketamine exerts rapid-onset and long-lasting antidepressant effects on depression, but some side effects limit its use. To identify a safer compound that may provide similar antidepressant effects, here we investigated whether CP-101,606, a selective NR2B receptor inhibitor, provides similar antidepressant effects and explored its underlying mechanisms. METHODS: To mimic depressive-like behavior, mice were subjected to chronic unpredictable mild stress (CUMS) for 21 days. Mice were treated with CP-101,606 at 10, 20, and 40 mg/kg doses for 7, 14, and 21 days, respectively, followed by a sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). Western blot analysis was performed on several targets (mTOR, p-mTOR, p70S6K, p-p70S6K, PSD-95, and GluA1), along with immunohistochemistry (GluA1) and immunofluorescence (p-mTOR) assays, using hippocampal tissue. RESULTS: CP-101,606 at 20 and 40 mg/kg doses for 7 and 14 days and fluoxetine 10 mg/kg and CP-101606 20 mg/kg for 21 days ameliorated depression-like behaviors in the SPT, TST, and FST. The effects of CP-101,606 were associated with a reversal of the CUMS-induced decrease in mTOR (Ser2448) and p70S6K (Thr389) phosphorylation and increasing PSD95 and GluA1 synthesis in the hippocampus. CONCLUSIONS: Our results demonstrate that CP-101,606 produces antidepressant effects in CUMS mice, which may be mediated by mTOR signaling cascade upregulation. Our findings suggest the possible utility of CP-101,606 as a treatment for depression.


Subject(s)
Depression , Ribosomal Protein S6 Kinases, 70-kDa , Mice , Animals , Depression/drug therapy , Depression/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , TOR Serine-Threonine Kinases/metabolism , Stress, Psychological/metabolism , Hippocampus/metabolism , Disease Models, Animal
11.
Ecotoxicol Environ Saf ; 271: 115953, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244512

ABSTRACT

The widespread use of biogas slurry could potentially raise the environmental risk of antibiotics. Dissolved organic matter (DOM), as the most active part of biogas slurry, was able to interact with antibiotics and play a crucial role in the structure and function of soil and aquatic ecosystems. The recent shifts in global climate patterns have garnered significant attention due to their substantial impact on temperature, thereby exerting a direct influence on the characteristics of DOM and subsequently on the environmental behavior of antibiotics. However, there is limited research concerning the impact of temperature on the binding of DOM and antibiotics. Thus, this study aimed to explore the temperature-dependent structural transformation and driving factors of biogas slurry-derived DOM (BSDOM). Additionally, the binding characteristics between BSDOM and the commonly used antibiotic norfloxacin (NOR) at different temperatures were studied by using multi spectroscopic methods and two-dimensional correlation spectroscopy (2D-COS) analysis. The results suggested that the temperature-dependent structural transformation of BSDOM was reversible, with a slight lag in the transition temperature under cooling (13 °C for heating and 17 °C for cooling). Heating promoted the conversion of protein-like to humic-like substances while cooling favored the decomposition of humic-like substances. BSDOM and NOR were static quenching, with oxygen-containing functional groups such as C-O and -OH playing an important role. Temperature influenced the order of binding, the activity of the protein fraction, and its associated functional groups. At temperatures of 25 °C and 40 °C, the fluorescent components were observed to exhibit consistent binding preferences, whereby the humic-like component demonstrated a greater affinity for NOR compared to the protein-like component. However, the functional group binding order exhibited an opposite trend. At 10 °C, a new protein-like component appeared and bound preferentially to NOR, when no C-O stretch corresponding to the amide was observed. The finding will contribute to a comprehensive understanding of the interaction mechanisms between DOM and antibiotics under climate change, as well as providing a theoretical basis to reduce the environmental risks of biogas slurry and antibiotics.


Subject(s)
Dissolved Organic Matter , Norfloxacin , Temperature , Biofuels , Ecosystem , Spectrometry, Fluorescence/methods , Humic Substances/analysis , Anti-Bacterial Agents , Proteins
12.
Nano Lett ; 23(17): 7805-7814, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37651260

ABSTRACT

Lithium (Li) metal is regarded as the "Holy Grail" of anodes for high-energy rechargeable lithium batteries by virtue of its ultrahigh theoretical specific capacity and the lowest redox potential. However, the Li dendrite impedes the practical application of Li metal anodes. Herein, lithiophilic three-dimensional Cu-CuSn porous framework (3D Cu-CuSn) was fabricated by a vapor phase dealloying strategy via the difference in saturated vapor pressure between different metals and the Kirkendall effect. CuSn alloy sites were converted into LiSn alloy sites through the molten Li infusion method, and composite Li metal anodes (3D Cu-LiSn-Li) are achieved. Alloyed tin, as the bridge between the porous copper substrate and metallic Li, plays a critical role in optimizing Li nucleation and enhancing the fast lithium migration kinetics. This work demonstrates that lithiophilic binary copper alloys are an effective way to achieve room-temperature high rate performance and satisfied low-temperature cycling stability for Li metal batteries.

13.
Drug Dev Res ; 85(1): e22129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37961833

ABSTRACT

Osteosarcoma (OS) is a primary malignant bone tumor characterized by frequent metastasis, rapid disease progression, and a high rate of mortality. Treatment options for OS have remained largely unchanged for decades, consisting primarily of cytotoxic chemotherapy and surgery, thus necessitating the urgent need for novel therapies. Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that possess antiproliferative effects in a wide array of cancer cell types. MO-OH-Nap is an α-substituted tropolone that has activity as an iron chelator. Here, we demonstrate that MO-OH-Nap activates all three arms of the unfolded protein response (UPR) pathway and induces apoptosis in a panel of human OS cell lines. Co-incubation with ferric chloride or ammonium ferrous sulfate completely prevents the induction of apoptotic and UPR markers in MO-OH-Nap-treated OS cells. MO-OH-Nap upregulates transferrin receptor 1 (TFR1) protein levels, as well as TFR1, divalent metal transporter 1 (DMT1), iron-regulatory proteins (IRP1, IRP2), ferroportin (FPN), and zinc transporter 14 (ZIP14) transcript levels, demonstrating the impact of MO-OH-Nap on iron-homeostasis pathways in OS cells. Furthermore, MO-OH-Nap treatment restricts the migration and invasion of OS cells in vitro. Lastly, metabolomic profiling of MO-OH-Nap-treated OS cells revealed distinct changes in purine and pyrimidine metabolism. Collectively, we demonstrate that MO-OH-Nap-induced cytotoxic effects in OS cells are dependent on the tropolone's ability to alter cellular iron availability and that this agent exploits key metabolic pathways. These studies support further evaluation of MO-OH-Nap as a novel treatment for OS.


Subject(s)
Osteosarcoma , Tropolone , Humans , Tropolone/pharmacology , Iron/metabolism , Iron/pharmacology , Apoptosis , Cell Line , Osteosarcoma/drug therapy , Cell Line, Tumor
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 646-651, 2024 Jun 15.
Article in Zh | MEDLINE | ID: mdl-38926383

ABSTRACT

Neonatal necrotizing enterocolitis (NEC) is the most common inflammatory intestinal disease in preterm infants, with a high incidence and mortality rate. The etiology and mechanisms of NEC are not yet fully understood, and multiple factors contribute to its occurrence and development. Recent studies have found that anemia is a risk factor for NEC in neonates, but the specific pathogenic mechanism remains unclear. This article reviews recent research on the relationship between anemia and NEC, providing a reference for further understanding the impact of anemia on intestinal injury and its association with NEC.


Subject(s)
Anemia , Enterocolitis, Necrotizing , Enterocolitis, Necrotizing/etiology , Humans , Infant, Newborn , Anemia/etiology
15.
Stroke ; 54(6): 1569-1577, 2023 06.
Article in English | MEDLINE | ID: mdl-37165864

ABSTRACT

BACKGROUND: The effect of imaging selection paradigms on endovascular thrombectomy outcomes in patients with acute ischemic stroke with large vessel occlusion remains uncertain. The study aimed to assess the effect of basic imaging (noncontrast computed tomography with or without computed tomographic angiography) versus advanced imaging (magnetic resonance imaging or computed tomography perfusion) on clinical outcomes following thrombectomy in patients with stroke with large vessel occlusion in the early and extended windows using a pooled analysis of patient-level data from 2 pivotal randomized clinical trials done in China. METHODS: This post hoc analysis used data from 1182 patients included in 2 multicenter, randomized controlled trials in China that evaluated adjunct therapies to endovascular treatment for acute ischemic stroke (Direct Endovascular Treatment for Large Artery Anterior Circulation Stroke performed from May 20, 2018, through May 2, 2020, and Intravenous Tirofiban Before Endovascular Treatment in Stroke from October 10, 2018, through October 31, 2021). Patients with occlusion of the intracranial internal carotid artery or proximal middle cerebral artery (M1/M2 segments) were categorized according to baseline imaging modality (basic versus advanced) as well as treatment time window (early, 0-6 hours versus extended, 6-24 hours from last known well to puncture). The primary outcome was the proportion of patients with functional independence (modified Rankin Scale score of 0-2) at 90 days. Multivariable Poisson regression analysis was performed to determine the association between imaging selection modality and outcomes after endovascular treatment at each time windows. RESULTS: A total of 1182 patients were included in this cohort analysis, with 648 in the early (471 with basic imaging versus 177 advanced imaging) and 534 in the extended (222 basic imaging versus 312 advanced imaging) time window. There were no differences in 90-day functional independence between the advanced and basic imaging groups in either time windows (early window: adjusted relative risk, 0.99 [95% CI, 0.84-1.16]; P=0.91; extended window: adjusted relative risk, 1.00 [95% CI, 0.84-1.20]; P=0.97). CONCLUSIONS: In this post hoc analysis of 2 randomized clinical trial pooled data involving patients with large vessel occlusion stroke, an association between imaging selection modality and clinical or safety outcomes for patients undergoing thrombectomy in either the early or extended windows was not detected. Our study adds to the growing body of literature on simpler imaging paradigms to assess thrombectomy eligibility across both the early and extended time windows. REGISTRATION: URL: http://www.chictr.org.cn; Unique identifiers: ChiCTR-IOR-17013568 and ChiCTR-INR-17014167.


Subject(s)
Brain Ischemia , Endovascular Procedures , Ischemic Stroke , Stroke , Humans , Brain Ischemia/diagnostic imaging , Brain Ischemia/surgery , Endovascular Procedures/methods , Stroke/diagnostic imaging , Stroke/surgery , Thrombectomy/methods , Treatment Outcome , Randomized Controlled Trials as Topic
16.
Small ; 19(11): e2205336, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36581559

ABSTRACT

Functional passivators are conventionally utilized in modifying the crystallization properties of perovskites to minimize the non-radiative recombination losses in perovskite light-emitting diodes (PeLEDs). However, the weak anchor ability of some commonly adopted molecules has limited passivation ability to perovskites and even may desorb from the passivated defects in a short period of time, which bring about plenty of challenges for further development of high-performance PeLEDs. Here, a multidentate molecule, formamidine sulfinic acid (FSA), is introduced as a novel passivator to perovskites. FSA has multifunctional groups (S≐O, C≐N and NH2 ) where the S≐O and C≐N groups enable coordination with the lead ions and the NH2 interacts with the bromide ions, thus providing the most effective chemical passivation for defects and in turn the formation of highly stable perovskite emitters. Moreover, the interaction between the FSA and octahedral [PbBr6 ]4- can inhibit the formation of unfavorable low-n domains to further minimize the inefficient energy transfer inside the perovskite emitters. Therefore, the FSA passivated green-emitting PeLED exhibits a high external quantum efficiency (EQE) of 26.5% with fourfold enhancement in operating lifetime as compared to the control device, consolidating that the multidentate molecule is a promising strategy to effectively and sustainably passivate the perovskites.

17.
Am J Pathol ; 192(12): 1725-1744, 2022 12.
Article in English | MEDLINE | ID: mdl-36150507

ABSTRACT

Large conductance Ca2+-activated potassium (BKCa) channels are regulated by intracellular free Ca2+ concentrations ([Ca2+]i) and channel protein phosphorylation. In hypercholesterolemia (HC), motility impairment of the sphincter of Oddi (SO) is associated with abnormal [Ca2+]i accumulation in smooth muscle cells of the rabbit SO (RSOSMCs), which is closely related to BKCa channel activity. However, the underlying mechanisms regulating channel activity remain unclear. In this study, an HC rabbit model was generated and used to investigate BKCa channel activity of RSOSMCs via SO muscle tone measurement in vitro and manometry in vivo, electrophysiological recording, intracellular calcium measurement, and Western blot analyses. BKCa channel activity was decreased, which correlated with [Ca2+]i overload and reduced tyrosine phosphorylation of the BKCa α-subunit in the HC group. The abnormal [Ca2+]i accumulation and decreased BKCa channel activity were partially restored by Na3VO4 pretreatment but worsened by genistein in RSOSMCs in the HC group. This study suggests that α-subunit tyrosine phosphorylation is required for [Ca2+]i to activate BKCa channels, and there is a negative feedback between the BKCa channel and the L-type voltage-dependent Ca2+ channel that regulates [Ca2+]i. This study provides direct evidence that tyrosine phosphorylation of BKCa α-subunits is required for [Ca2+]i to activate BKCa channels in RSOSMCs, which may be the underlying physiological and pathologic mechanism regulating the activity of BKCa channels in SO cells.


Subject(s)
Potassium Channels , Sphincter of Oddi , Animals , Rabbits , Phosphorylation , Protein Processing, Post-Translational , Tyrosine
18.
Appl Environ Microbiol ; 89(6): e0022023, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37191513

ABSTRACT

Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.


Subject(s)
Aminohydrolases , Nitriles , Aminohydrolases/genetics , Aminohydrolases/metabolism , Catalysis , Protein Engineering , Substrate Specificity
19.
PLoS Biol ; 18(9): e3000825, 2020 09.
Article in English | MEDLINE | ID: mdl-32886690

ABSTRACT

Microbial dysbiosis in the upper digestive tract is linked to an increased risk of esophageal squamous cell carcinoma (ESCC). Overabundance of Porphyromonas gingivalis is associated with shorter survival of ESCC patients. We investigated the molecular mechanisms driving aggressive progression of ESCC by P. gingivalis. Intracellular invasion of P. gingivalis potentiated proliferation, migration, invasion, and metastasis abilities of ESCC cells via transforming growth factor-ß (TGFß)-dependent Drosophila mothers against decapentaplegic homologs (Smads)/Yes-associated protein (YAP)/Transcriptional coactivator with PDZ-binding motif (TAZ) activation. Smads/YAP/TAZ/TEA domain transcription factor1 (TEAD1) complex formation was essential to initiate downstream target gene expression, inducing an epithelial-mesenchymal transition (EMT) and stemness features. Furthermore, P. gingivalis augmented secretion and bioactivity of TGFß through glycoprotein A repetitions predominant (GARP) up-regulation. Accordingly, disruption of either the GARP/TGFß axis or its activated Smads/YAP/TAZ complex abrogated the tumor-promoting role of P. gingivalis. P. gingivalis signature genes based on its activated effector molecules can efficiently distinguish ESCC patients into low- and high-risk groups. Targeting P. gingivalis or its activated effectors may provide novel insights into clinical management of ESCC.


Subject(s)
Bacteroidaceae Infections/complications , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Porphyromonas gingivalis/physiology , Transforming Growth Factor beta/physiology , Acyltransferases , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Animals , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/mortality , Bacteroidaceae Infections/pathology , Cells, Cultured , Disease Progression , Drosophila , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/microbiology , Esophageal Neoplasms/mortality , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/microbiology , Esophageal Squamous Cell Carcinoma/mortality , Female , Follow-Up Studies , HCT116 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Signal Transduction/physiology , Smad Proteins/metabolism , Survival Analysis , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , YAP-Signaling Proteins
20.
Nature ; 546(7657): 248-253, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28538729

ABSTRACT

Glucagon-like peptide 1 (GLP-1) is a hormone with essential roles in regulating insulin secretion, carbohydrate metabolism and appetite. GLP-1 effects are mediated through binding to the GLP-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR) that signals primarily through the stimulatory G protein Gs. Class B GPCRs are important therapeutic targets; however, our understanding of their mechanism of action is limited by the lack of structural information on activated and full-length receptors. Here we report the cryo-electron microscopy structure of the peptide-activated GLP-1R-Gs complex at near atomic resolution. The peptide is clasped between the N-terminal domain and the transmembrane core of the receptor, and further stabilized by extracellular loops. Conformational changes in the transmembrane domain result in a sharp kink in the middle of transmembrane helix 6, which pivots its intracellular half outward to accommodate the α5-helix of the Ras-like domain of Gs. These results provide a structural framework for understanding class B GPCR activation through hormone binding.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/chemistry , Glucagon-Like Peptide-1 Receptor/ultrastructure , Animals , GTP-Binding Protein alpha Subunits, Gs/metabolism , Glucagon-Like Peptide-1 Receptor/classification , Glucagon-Like Peptide-1 Receptor/metabolism , Models, Molecular , Protein Domains , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL