Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Small ; : e2308715, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412419

ABSTRACT

Biomolecular piezoelectric materials show great potential in the field of wearable and implantable biomedical devices. Here, a self-assemble approach is developed to fabricating flexible ß-glycine piezoelectric nanofibers with interfacial polarization locked aligned crystal domains induced by Nb2 CTx nanosheets. Acted as an effective nucleating agent, Nb2 CTx nanosheets can induce glycine to crystallize from edges toward flat surfaces on its 2D crystal plane and form a distinctive eutectic structure within the nanoconfined space. The interfacial polarization locking formed between O atom on glycine and Nb atom on Nb2 CTx is essential to align the ß-glycine crystal domains with (001) crystal plane intensity extremely improved. This ß-phase glycine/Nb2 CTx nanofibers (Gly-Nb2 C-NFs) exhibit fabulous mechanical flexibility with Young's modulus of 10 MPa, and an enhanced piezoelectric coefficient of 5.0 pC N-1 or piezoelectric voltage coefficient of 129 × 10-3 Vm N-1 . The interface polarization locking greatly improves the thermostability of ß-glycine before melting (≈210°C). A piezoelectric sensor based on this Gly-Nb2 C-NFs is used for micro-vibration sensing in vivo in mice and exhibits excellent sensing ability. This strategy provides an effective approach for the regular crystallization modulation for glycine crystals, opening a new avenue toward the design of piezoelectric biomolecular materials induced by 2D materials.

2.
Angew Chem Int Ed Engl ; 62(25): e202303470, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37069137

ABSTRACT

The development of aryl alkyl sulfides as dichotomous electrophiles for site-selective silylation via C-S bond cleavage has been achieved. Iron-catalyzed selective cleavage of C(aryl)-S bonds can occur in the presence of ß-diketimine ligands, and the cleavage of C(alkyl)-S bonds can be achieved by t-BuONa without the use of transition metals, resulting in the corresponding silylated products in moderate to excellent yields. Mechanistic studies suggest that Fe-Si species may undergo metathesis reactions during the cleavage of C(aryl)-S bonds, while silyl radicals are involved during the cleavage of C(alkyl)-S bonds.


Subject(s)
Sulfides , Transition Elements , Catalysis , Iron , Ligands
3.
Biochem Cell Biol ; 100(6): 473-484, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36265182

ABSTRACT

Malignant melanoma is a highly aggressive cutaneous neoplasm with increasing incidence worldwide. Non-SMC condensin II complex subunit G2 (NCAPG2) exerts import biological function in the pathogenesis of several tumors. In this study, the functional roles of NCAPG2 knockdown in malignant melanoma were revealed in in vitro and in vivo experiments. In vitro study demonstrated that NCAPG2 depletion could inhibit proliferation and migration and promote apoptosis of malignant melanoma cells. Our in vivo date further confirmed that NCAPG2 knockdown attenuated tumor growth of malignant melanoma. Interestingly, NCAPG2 drove tumor development of malignant melanoma through activating the signal transducer and activator of transcription 3 (STAT3). In conclusion, this study elaborated the tumor-promoting effects of NCAPG2 on malignant melanoma, and NCAPG2 may be a potential therapeutic target for malignant melanoma therapy.


Subject(s)
Chromosomal Proteins, Non-Histone , Melanoma , Skin Neoplasms , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Animals , Melanoma, Cutaneous Malignant
4.
Biochem Biophys Res Commun ; 611: 126-131, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35487062

ABSTRACT

Sustained inflammatory responses delay wound repair in diabetic skin. The stimulator of interferon genes (STING) plays a vital role in the innate immune responses. However, its function in diabetic skin wound repair, and the underlying mechanism remains unclear. Here, we reported that STING activation is a pathogenic marker that correlates with delayed wound repair in diabetic skin. Firstly, we found that STING expression is enhanced in the epidermis of STZ induced diabetes mouse model and db/db mouse model. Consistently, we also found that STING expression was upregulated in keratinocytes with the high-glucose (HG) treatment. Moreover, silencing of STING accelerated wound healing in vitro. In vivo, inhibition of STING by c176 inhibited inflammatory response in the epidermis and accelerated wound healing in diabetic skin. In addition, we found that autophagy dysfunction is correlated with the expression of STING in epidermis of diabetic mice. Induction of autophagy by rapamycin significantly reduced STING expression in keratinocytes. Collectively, these results indicated that defects of autophagy might lead to the activation of STING and finally delay the diabetic wound healing.


Subject(s)
Diabetes Mellitus, Experimental , Wound Healing , Animals , Diabetes Mellitus, Experimental/metabolism , Epidermal Cells/metabolism , Keratinocytes/metabolism , Mice , Skin/metabolism
5.
Ecotoxicol Environ Saf ; 236: 113479, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35366561

ABSTRACT

Effects of iron and sulfur redox states in the soil caused by different growth seasons on Cd uptake by rice remain unclear. In this study, three early rice cultivars and three late rice cultivars were cultivated in a double-cropping system in Cd-contaminated paddy fields. The total Cd accumulation of early rice cultivars was 20.5-51.1 µg plant-1, and the Cd concentration in grains was 0.19-0.73 mg kg-1, significantly lower than those of late rice cultivars by 8-15 times and 3-9 times, respectively. The filling and mature stages were identified as the most crucial stages of Cd uptake by both early and late rice cultivars. The growth season of early rice cultivars was characterized by more abundant rainfall and lower soil Eh than that for late rice cultivars. Therefore, the abundances of Fe-reducing bacteria (FeRB, 36.9-39%) and S-reducing bacteria (SRB, 1.77-2.79%) were higher during the filling and mature stages of early rice. They primarily belonged to the Clostridium, Geobacter, and Desulfuromonadales genera. Stimulation of FeRB and SRB activity promoted Fe(III) and S reduction and increased the content of Fe2+ and S2- in rhizosphere soil. This promoted the binding of Cd to amorphous Fe oxides and sulfides or Fe sulfides, thereby decreasing the available Cd content. Moreover, the Cd in the iron plaque (IP) and Cd transfer from IP to roots were lower in early rice. These findings suggest that maintaining high moisture content in the soil during the filling and mature stages, especially for late rice cultivars, could efficiently reduce Cd uptake by rice planted in contaminated soil.


Subject(s)
Oryza , Soil Pollutants , Cadmium/metabolism , Iron/chemistry , Oryza/metabolism , Seasons , Soil/chemistry , Soil Pollutants/analysis , Sulfides/metabolism , Sulfur/metabolism
6.
Small ; 17(36): e2102550, 2021 09.
Article in English | MEDLINE | ID: mdl-34314097

ABSTRACT

Despite the boom in the water-triggered electric power generation technologies, few attempts have been made with a broader horizonyielding the electricity from sweat, which is of great value for low-power-consumption wearable electronics. Here, an electromechanical coupling and humidity-actuated two-in-one humidity actuator-driven piezoelectric generator (HAPG) are reported, that can yield continuous electric power from fluctuations in the ambient humidity. It is composed of polyvinyl alcohol (PVA)-wrapped highly aligned dopamine (DA)/polyvinylidene fluoride (PVDF) shell/core nanofibers (PVA@DA/PVDF NFs). As-received PVA@DA/PVDF NFs can exchange water with the ambient humidity to perform expansion and contraction and convert them into electric power. An all-fiber-based portable HAPG is fabricated and tested on human palm skin. The devices show high sensitivity and accuracy for converting the mental sweating-derived continuous moisture fluctuations into electric power. This electric power can be stored in capacitors, which is expected to power micro- and nano-electronic devices or be used in electrotherapy such as electrical stimulation to promote wound healing. Beyond this, the obtained voltage profiles exhibit unique features that can reflect the typical sweat damping oscillation curve features.


Subject(s)
Nanofibers , Dopamine , Humans , Polyvinyl Alcohol , Polyvinyls
7.
J Asian Nat Prod Res ; 23(11): 1100-1106, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33345615

ABSTRACT

A new 4-hydroxy-α-pyrone, namely capsulactone (1), was isolated from an endophytic fungus Penicillium capsulatum XL027 obtained from the leaves of Panax notoginseng. The structure and absolute configuration of 1 were elucidated through a combination of spectroscopic data and computed methods, as well as by comparison with literature data. Compound 1 exhibited weak activity against methicinllin-resistant Staphylococcus aureus with an MIC value of 100 µg/ml.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Penicillium , Anti-Bacterial Agents/pharmacology , Fungi , Microbial Sensitivity Tests , Molecular Structure , Pyrones/pharmacology
8.
Angew Chem Int Ed Engl ; 60(18): 10211-10218, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33555634

ABSTRACT

The first iron-catalyzed defluorosilylation of unactivated gem-difluoroalkenes was developed, delivering gem-disilylated alkenes and (E)-silylated alkenes with excellent efficiency. This protocol features good functional group compatibility and excellent regio- and stereoselectivity, enabling the late-stage silylation of biologically relevant compounds, thus providing good opportunities for applications in medicinal chemistry. Preliminary mechanistic studies and DFT calculations reveal that a nucleophilic addition and elimination of the second C-F bond might be involved in the disilylation catalytic system, demonstrating unusual reactivity characteristics of iron catalysis.

9.
Biochem Biophys Res Commun ; 524(3): 784-790, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32037091

ABSTRACT

The accessory sec system consisting of seven conserved components is commonly distributed among pathogenic Gram-positive bacteria for the secretion of serine-rich-repeat proteins (SRRPs). Asp1/2/3 protein complex in the system is responsible for both the O-acetylation of GlcNAc and delivering SRRPs to SecA2. However, the molecular mechanism of how Asp1/2/3 transport SRRPs remains unknown. Here, we report the complex structure of Asp1/2/3 from Streptococcus pneumoniae at 2.9 Å. Further functional assays indicated that Asp1/2/3 can stimulate the ATPase activity of SecA2. In addition, the deletion of asp1/2/3 gene resulted in the accumulation of a secreted version of PsrP with an altered glycoform in protoplast fraction of the mutant cell, which suggested the modification/transport coupling of the substrate. Altogether, these findings not only provide structural basis for further investigations on the transport process of SRRPs, but also uncover the indispensable role of Asp1/2/3 in the accessory sec system.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Repetitive Sequences, Amino Acid , Serine/metabolism , Streptococcus pneumoniae/metabolism , Amino Acid Sequence , Glycosylation , Protein Transport , Structure-Activity Relationship
10.
Cell Tissue Res ; 379(1): 181-193, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31768712

ABSTRACT

Diabetes mellitus (DM) often causes delayed wound healing in patients, which can lead to limb loss, disability, and even death. Many conventional therapeutic strategies have been proposed, but there is still no effective therapy for DM wounds. This study aimed to explore the effects of CD271 and phosphorylated tyrosine kinase receptor A (pTrkA) on the migration and proliferation abilities of epidermal stem cells (eSCs) and on the activation of DM wound healing. We investigated the interventional effects of CD271-overexpressing eSC (CD271 eSC) treatment and pTrkA inhibition (through k252a treatment) on delayed wound healing using mice with streptozotocin-induced DM. The migration and proliferation abilities of control eSCs, CD271 eSCs, and k252a-treated CD271 eSCs were observed under high-glucose conditions. Decreases in CD271 and increases in pTrkA were observed in DM mouse skin compared with control mouse skin; in addition, the rate of wound closure in DM mice was promoted by CD271 eSC treatment but delayed by pTrkA inhibition. Furthermore, the CD271 eSC migration and proliferation were greater than of control eSCs. Compared with that of CD271 eSCs, the number of CD271+k252a eSCs decreased significantly under high-glucose conditions. In parallel, the expression levels of the pERK, pAkt, and pJNK pathways increased in CD271 eSCs and decreased in CD271+k252a eSCs under high glucose. Our findings demonstrate that CD271 and pTrkA affect DM wound closure by promoting the eSC migration and proliferation. This mechanism involving the pERK, pAkt, and pJNK pathways might be a new therapeutic target for the treatment of delayed wound re-epithelialization in DM.


Subject(s)
Adapalene/therapeutic use , Diabetes Mellitus, Experimental/therapy , Epidermal Cells/transplantation , Receptor, trkA/antagonists & inhibitors , Stem Cell Transplantation , Stem Cells/metabolism , Wound Healing/drug effects , Adapalene/administration & dosage , Adapalene/metabolism , Animals , Carbazoles/therapeutic use , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Inhibitors/therapeutic use , Epidermal Cells/metabolism , Indole Alkaloids/therapeutic use , Male , Mice , Mice, Inbred C57BL , Receptor, trkA/metabolism
11.
Biochem J ; 476(10): 1433-1444, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31036719

ABSTRACT

The tubulin-like GTPase protein FtsZ, which forms a discontinuous cytokinetic ring at mid-cell, is a central player to recruit the division machinery to orchestrate cell division. To guarantee the production of two identical daughter cells, the assembly of FtsZ, namely Z-ring, and its precise positioning should be finely regulated. In Streptococcus pneumoniae, the positioning of Z-ring at the division site is mediated by a bitopic membrane protein MapZ (mid-cell-anchored protein Z) through direct interactions between the intracellular domain (termed MapZ-N (the intracellular domain of MapZ)) and FtsZ. Using nuclear magnetic resonance titration experiments, we clearly assigned the key residues involved in the interactions. In the presence of MapZ-N, FtsZ gains a shortened activation delay, a lower critical concentration for polymerization and a higher cooperativity towards GTP hydrolysis. On the other hand, MapZ-N antagonizes the lateral interactions of single-stranded filaments of FtsZ, thus slows down the formation of highly bundled FtsZ polymers and eventually maintains FtsZ at a dynamic state. Altogether, we conclude that MapZ is not only an accelerator to trigger the polymerization of FtsZ, but also a brake to tune the velocity to form the end-product, FtsZ bundles. These findings suggest that MapZ is a multi-functional regulator towards FtsZ that controls both the precise positioning and proper timing of FtsZ polymerization.


Subject(s)
Bacterial Proteins , Cytoskeletal Proteins , Guanosine Triphosphate , Protein Multimerization , Streptococcus pneumoniae , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Hydrolysis , Protein Domains , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/metabolism
12.
Zhongguo Zhong Yao Za Zhi ; 45(22): 5537-5554, 2020 Nov.
Article in Zh | MEDLINE | ID: mdl-33350217

ABSTRACT

In this study, the chemical profiling of Jingyin Granules and the tissue distribution of nine major constituents in this Chinese medicine were performed after oral administration of Jingyin Granules to rats, by using UHPLC-Q-Exactive Orbitrap HR-MS. An Acquity UPLC BEH C_(18) chromatographic column(2.1 mm×100 mm, 1.7 µm) was used as solid phase, while the mobile phase was methanol and 0.1% formic acid water for gradient elution. The major constituents in this Chinese medicine were quickly and accurately identified, via comparison with the retention times and MS/MS spectra of the standards. A total of 106 chemicals were identified from Jingyin Granules, including 24 kinds of organic acids, 47 kinds of flavonoids, 10 kinds of iridoids, and 21 kinds of saponins and 4 kinds of other compounds. After oral administered Jingyin Granules to rats, 48, 30, 25, 23, 45, 34, 39, 26, 19 prototype compounds were identified in serum, heart, liver, spleen, lung, kidney, brain, fat, and testicles, respectively. Meanwhile, an LC-MS based analytical method was established for simultaneous determination of chlorogenic acid, swertiamarin, caffeic acid, sweroside, liquiritin, prim-O-glucosylcimifugin, arctiin, 5-O-methylvisammioside and arctigenin in biological samples. The tissue distribution(serum, liver and lung) of these nine aim constituents in rats after oral administration of Jingyin Granules were investigated. It was found that these nine constituents could be quickly absorbed into circulation system and then distributed to liver and lung tissues. Except arctigenin, the exposure of other eight aim constituents to serum and lung was peaked at 1 h. At 1 h, the exposure of these components to lung tissue were ranked as follows: swertiamarin [(75 191.0±3 483.21) ng·g~(-1)]>arctiin [(2 716.5±36.06) ng·g~(-1)]>5-O-methylvisammioside [(585.1±0.71) ng·g~(-1)]>arctigenin [(437.45±3.18) ng·g~(-1)]>chlorogenic acid [(308.1±5.66) ng·g~(-1)]>prim-O-glucosylcimifugin [(211.35±2.19) ng·g~(-1)]>sweroside [(184.3±9.05) ng·g~(-1)]>caffeic acid [(175.95±2.05) ng·g~(-1)]>liquiritin [(174.78±153.34) ng·g~(-1)]. In summary, an UHPLC-Q-Exactive Orbitrap HR-MS method has been established for rapid and accurate identification of the constituents in Jingyin Granules, while the tissue distribution of nine major absorpted constituents were investigated in rats following oral administration of Jingyin Granules. These findings provided key information and guidance for further studies on pharmacodynamic substances and clinical applications of Jingyin Granules.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Rats , Tissue Distribution
13.
Acc Chem Res ; 51(9): 2264-2278, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30132322

ABSTRACT

Difluoroalkylated compounds play a remarkably important role in life and materials sciences because of the unique characteristics of the difluoromethylene (CF2) group. In particular, precise introduction of a CF2 group at the benzylic position can dramatically improve the biological properties of the corresponding molecules. As a consequence, difluoroalkylation of aromatic compounds has become a powerful strategy in modulating the bioactivities of organic molecules. However, efficient strategies to selectively synthesize difluoroalkylated arenes had been very limited before 2012. Traditional synthetic methods in this regard suffer from either harsh reaction conditions or narrow substrate scope, significantly restricting their widespread applications, particularly for late-stage difluoroalkylation of bioactive molecules. To overcome these limitations, a straightforward route to access these valuable difluoroalkylated skeletons is the direct introduction of the difluoroalkylated group (CF2R) onto aromatic rings through transition-metal-catalyzed cross-coupling. However, because of the instability of some difluoroalkylated metal species, which are prone to protonation, dimerization, and/or generation of other unknown byproducts, it is difficult to selectively control the catalytic cycle to suppress these side reactions. In this context, we proposed the use of low-cost and widely available difluoroalkyl halides as fluoroalkyl sources for transition-metal-catalyzed difluoroalkylation reactions via cross-coupling. In this Account, we summarize our major efforts on copper-, palladium-, and nickel-catalyzed difluoroalkylations of aromatics with low-cost and widely available difluoroalkyl halides as fluoroalkyl sources. Four modes of catalytic difluoroalkylation reactions, including nucleophilic difluoroalkylation, electrophilic difluoroalkylation, radical difluoroalkylation, and metal-difluorocarbene coupling (MeDiC), have been demonstrated through careful modulation of the catalytic systems. Among these reactions, the MeDiC reaction represents a new mode of fluoroalkylation. These processes enable difluoroalkylation of a variety of aryl halides and arylboron reagents under mild reaction conditions. A wide range of difluoroalkyl halides, including activated difluoroalkyl halides (Cl/BrCF2R, R = π system), unactivated difluoroalkyl halides (BrCF2R, R = alkyl, H), and especially the inert and inexpensive industrial chemical chlorodifluoromethane (ClCF2H), are applicable to these reactions, providing straightforward and facile routes to a diverse range of difluoroalkylated (hetero)arenes. These difluoroalkyl halide-based strategies can also be applied to prepare difluoroalkylated alkenes, alkynes, and alkanes and feature impressive advantages over conventional methods for the synthesis of difluoroalkylated compounds in terms of synthetic efficiency, functional group tolerance, and structural diversity. In particular, the late-stage difluoroalkylation of bioactive molecules through these processes offers good opportunities for the synthesis and development of new medicinal agents without the need for multistep de novo syntheses.

14.
Acta Pharmacol Sin ; 37(11): 1401-1412, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27498773

ABSTRACT

AIM: 1,1'-([1,1'-Biphenyl]-4,4'-diyl)bis(3-(piperidin-1-yl)propan-1-one)dihydrochloride (DL0410) is a novel synthetic dual acetylcholinesterase (AChE)/butyrocholinesterase (BuChE) inhibitor, which has shown a potential therapeutic effect on Alzheimer's disease (AD). In this study we examined whether DL0410 produced neuroprotective effects in an AD cellular model and an Aß1-42-induced amnesia mouse model. METHODS: The in vitro inhibitory activities against AChE and BuChE were estimated using Ellman's assay. Copper-induced toxicity in APPsw-SY5Y cells was used as AD cellular model, the cell viability was assessed using MTS assay, and cell apoptosis was evaluated based on mitochondrial membrane potential detection. Aß1-42-induced amnesia mouse model was made in male mice by injecting aggregated Aß1-42 (2 µg in 2 µL 0.1% DMSO) into the right cerebral ventricle. Before and after Aß1-42 injection, the mice were orally administered DL0410 (1, 3, 9 mg·kg-1·d-1) or rivastigmine (2 mg·kg-1·d-1) for 3 and 11 d, respectively. Memory impairments were examined using Morris water maze (MWM) test and passive avoidance test. The expression levels of APP, CREB, BDNF, JNK and Akt in the mouse brains were measured with either immunohistochemistry or Western blotting. RESULTS: DL0410 exhibited in vitro inhibitory abilities against AChE and BuChE with IC50 values of 0.286±0.004 and 3.962±0.099 µmol/L, respectively, which were comparable to those of donepezil and rivastigmine. In APPsw-SY5Y cells, pretreatment with DL0410 (1, 3, and 10 µmol/L) decreased the phosphorylation of JNK and increased the phosphorylation of Akt, markedly decreased copper-stimulated Aß1-42 production, reversed the loss of mitochondrial membrane potential, and dose-dependently increased the cell viability. In Aß1-42-treated mice, DL0410 administration significantly ameliorated learning and memory deficits in MWM test and passive avoidance test. Furthermore, DL0410 administration markedly decreased Aß1-40/42 deposits in mouse cerebral cortices, and significantly up-regulated neurotrophic CREB/BDNF. Meanwhile, Akt/JNK signaling pathway may play a key role in the neuroprotective effect of DL0410. CONCLUSION: DL0410 ameliorates cognitive deficit and exerts neuronal protection in AD models, implicating this compound as a candidate drug for the prevention and therapy of AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Biphenyl Compounds/pharmacology , Brain/drug effects , Cholinesterase Inhibitors/pharmacology , Memory Disorders/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Peptide Fragments/toxicity , Piperidines/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Apoptosis/drug effects , Avoidance Learning/drug effects , Brain/pathology , Butyrylcholinesterase/metabolism , Cell Line, Tumor , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Cholinesterase Inhibitors/therapeutic use , Donepezil , Indans/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Maze Learning/drug effects , Membrane Potential, Mitochondrial/drug effects , Memory Disorders/metabolism , Memory Disorders/psychology , Mice, Inbred ICR , Neurons/pathology , Neuroprotective Agents/therapeutic use , Peptide Fragments/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rivastigmine/pharmacology , Signal Transduction
15.
Angew Chem Int Ed Engl ; 55(35): 10401-5, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27444062

ABSTRACT

Although important progress has been made in the fluoroalkylation reactions, the transition-metal-catalyzed carbonylative fluoroalkylation reaction remains challenging so far. Herein, we report the first example of a Pd-catalyzed carbonylation of difluoroalkyl bromides with (hetero)arylboronic acids under one atmosphere pressure of CO. The reaction can also be extended to the aryl potassium trifluoroborate salts. The advantages of this protocol are synthetic simplicity, broad substrate scope, and excellent functional group compatibility. The resulting difluoroalkyl ketones can serve as versatile building blocks for the synthesis of various useful fluorinated compounds.

16.
Nat Methods ; 9(9): 917-22, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22796663

ABSTRACT

Current methods for studying central nervous system myelination necessitate permissive axonal substrates conducive to myelin wrapping by oligodendrocytes. We have developed a neuron-free culture system in which electron-spun nanofibers of varying sizes substitute for axons as a substrate for oligodendrocyte myelination, thereby allowing manipulation of the biophysical elements of axonal-oligodendroglial interactions. To investigate axonal regulation of myelination, this system effectively uncouples the role of molecular (inductive) cues from that of biophysical properties of the axon. We use this method to uncover the causation and sufficiency of fiber diameter in the initiation of concentric wrapping by rat oligodendrocytes. We also show that oligodendrocyte precursor cells display sensitivity to the biophysical properties of fiber diameter and initiate membrane ensheathment before differentiation. The use of nanofiber scaffolds will enable screening for potential therapeutic agents that promote oligodendrocyte differentiation and myelination and will also provide valuable insight into the processes involved in remyelination.


Subject(s)
Cell Culture Techniques/methods , Myelin Sheath/physiology , Nanofibers/chemistry , Nanotechnology/methods , Oligodendroglia/cytology , Animals , Cell Proliferation , Female , Male , Microscopy, Electron, Scanning , Polylysine/chemistry , Rats , Rats, Sprague-Dawley
17.
Yao Xue Xue Bao ; 50(9): 1142-7, 2015 Sep.
Article in Zh | MEDLINE | ID: mdl-26757551

ABSTRACT

Salvianolic acid A (Sal A) is one of the most effective compounds isolated from the root of Salvia miltiorrhiza. Up to now, several studies regarding the pharmacokinetic profiles of Sal A have been reported, however there is no such study reported in monkeys, the species which is more similar to human. The aim of this study is to develop a LC-MS method for the determination of Sal A in monkey plasma and apply it to the pharmacokinetic studies of monkeys. After single intravenous administration of Sal A, the plasma concentration-time curves were observed and the main pharmacokinetic parameters were calculated. The plasma concentration at 2 min (C2 (min)) values were (28.343 ± 6.426), (45.679 ± 12.301) and (113.293 ± 24.360) mg x L(-1) for Rhesus monkeys treated with Sal A at 2.5, 5 and 10 mg x kg(-1). The area under the concentration-time curve (AUC(0-∞)) values were (3.316 ± 0.871), (5.754 ± 2.150) and (13.761 ± 2.825) µg x L(-1) x h, respectively. Furthermore, this method was improved and applied to the simultaneous determination of Sal A, Sal B and Sal C, which provided useful information for preclinical studies and clinical trials of Sal A, Sal B and Sal C.


Subject(s)
Caffeic Acids/pharmacokinetics , Lactates/pharmacokinetics , Administration, Intravenous , Animals , Chromatography, Liquid , Drugs, Chinese Herbal/pharmacokinetics , Macaca mulatta , Mass Spectrometry , Plant Roots/chemistry , Salvia miltiorrhiza/chemistry
18.
Angew Chem Int Ed Engl ; 54(4): 1270-4, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25469665

ABSTRACT

An efficient palladium-catalyzed Heck-type reaction of fluoroalkyl halides, including perfluoroalkyl bromides, trifluoromethyl iodides, and difluoroalkyl bromides, has been developed. The reaction proceeds under mild reaction conditions with high efficiency and broad substrate scope, and provides a general and straightforward access to fluoroalkylated alkenes which are of interest in life and material sciences.


Subject(s)
Alkenes/chemical synthesis , Bromides/chemistry , Fluorine/chemistry , Palladium/chemistry , Alkenes/chemistry , Catalysis , Phosphines/chemistry , Xanthenes/chemistry
19.
J Am Chem Soc ; 136(4): 1230-3, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24417183

ABSTRACT

A first example of Pd-catalyzed gem-difluoroallylation of organoborons using 3-bromo-3,3-difluoropropene (BDFP) in high efficiency with high α/γ-substitution regioselectivity has been developed. The reaction can also be extended to substituted BDFPs and has advantages of low catalyst loading (0.8 to 0.01 mol %), broad substrate scope, and excellent functional group compatibility, thus providing a facile route for practical application in drug discovery and development.


Subject(s)
Alkenes/chemistry , Boron Compounds/chemistry , Hydrocarbons, Halogenated/chemistry , Hydrocarbons, Halogenated/chemical synthesis , Organometallic Compounds/chemistry , Palladium/chemistry , Catalysis , Molecular Structure
20.
Crit Care Med ; 42(5): e373-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24557422

ABSTRACT

OBJECTIVES: Ischemia/reperfusion is a leading cause of liver damage after surgical intervention, trauma, and transplantation. It has been reported that the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 attenuates myocardial, cerebral, and renal ischemia/reperfusion damage. This study aimed to investigate the involvement of sirtuin 1-mediated p66shc inhibition in liver ischemia/reperfusion and explore the effect of carnosic acid and ischemic preconditioning on liver ischemia/reperfusion-induced damage. DESIGN: Laboratory investigation. SETTING: University laboratory. SUBJECTS: Male Sprague-Dawley rats and HepG2 cells. INTERVENTIONS: The rats were subjected to 45 minutes of ischemia to 70% of the liver, followed by 3-hour reperfusion. The HepG2 cells were subjected to hypoxia/reoxygenation-induced injury. MEASUREMENTS AND MAIN RESULTS: In the rats with liver ischemia/reperfusion injury, carnosic acid pretreatment and ischemic preconditioning dramatically reduced the serum aminotransferase activity and proinflammatory chemokine levels and improved the liver histological evaluations. Carnosic acid and ischemic preconditioning also increased manganese superoxide dismutase and Bcl-xL, but down-regulated cleaved caspase-3. Interestingly, the protective effect of carnosic acid and ischemic preconditioning was positively associated with sirtuin 1 activation. By contrast, p66shc, a kinase that promotes oxidative injury and apoptosis, was inhibited by carnosic acid and ischemic preconditioning. Sirtuin 1 small interfering RNA knockdown experiments confirmed that carnosic acid increased sirtuin 1-mediated repression of p66shc in HepG2 cells and that the protective effect of carnosic acid against hypoxia/reoxygenation injury was inhibited by the sirtuin 1 inhibitor nicotinamide. These results suggest that carnosic acid protects hepatocytes from hypoxia/reoxygenation damage through sirtuin 1-mediated p66shc suppression. To support this notion, we further demonstrated that the sirtuin 1 activator resveratrol achieved a protective effect similar to that of carnosic acid against hypoxia/reoxygenation injury, whereas sirtuin 1 small interfering RNA and nicotinamide had the opposite effect. CONCLUSIONS: Carnosic acid and ischemic preconditioning protect against ischemia/reperfusion-induced liver injury. Mechanistically, the protective effect involves the sirtuin 1-mediated inhibition of p66shc, suggesting that this pathway is a novel potential therapeutic target for protecting the liver from ischemia/reperfusion injury.


Subject(s)
Abietanes/pharmacology , Ischemia/enzymology , Liver/drug effects , Niacinamide/pharmacology , Plant Extracts/pharmacology , Reperfusion Injury/enzymology , Shc Signaling Adaptor Proteins/metabolism , Sirtuin 1/physiology , Analysis of Variance , Animals , Caspases/blood , Enzyme Inhibitors/pharmacology , Hep G2 Cells , Humans , In Situ Nick-End Labeling , Ischemia/pathology , Ischemic Preconditioning , Liver/enzymology , Liver/pathology , Male , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Resveratrol , Shc Signaling Adaptor Proteins/antagonists & inhibitors , Src Homology 2 Domain-Containing, Transforming Protein 1 , Stilbenes/pharmacology , Superoxide Dismutase/blood , Transaminases/blood
SELECTION OF CITATIONS
SEARCH DETAIL