Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Molecules ; 24(1)2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30577495

ABSTRACT

The tumour microenvironment (TME) is composed of extracellular matrix and non-mutated cells supporting tumour growth and development. Tumour-associated macrophages (TAMs) are among the most abundant immune cells in the TME and are responsible for the onset of a smouldering inflammation. TAMs play a pivotal role in oncogenic processes as tumour proliferation, angiogenesis and metastasis, and they provide a barrier against the cytotoxic effector function of T lymphocytes and natural killer (NK) cells. However, TAMs are highly plastic cells that can adopt either pro- or anti-inflammatory roles in response to environmental cues. Consequently, TAMs represent an attractive target to recalibrate immune responses in the TME. Initial TAM-targeted strategies, such as macrophage depletion or disruption of TAM recruitment, have shown beneficial effects in preclinical models and clinical trials. Alternatively, reprogramming TAMs towards a proinflammatory and tumouricidal phenotype has become an attractive strategy in immunotherapy. This work summarises the molecular wheelwork of macrophage biology and presents an overview of molecular strategies to repolarise TAMs in immunotherapy.


Subject(s)
Immunotherapy/methods , Macrophages/metabolism , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Humans
2.
Cancer Immunol Immunother ; 65(10): 1249-59, 2016 10.
Article in English | MEDLINE | ID: mdl-27060000

ABSTRACT

Microsatellite instability (MSI), the somatic accumulation of length variations in repetitive DNA sequences called microsatellites, is frequently observed in both hereditary and sporadic colorectal cancer (CRC). It has been established that defects in the DNA mismatch repair (MMR) pathway underlie the development of MSI in CRC. After the inactivation of the DNA MMR pathway, misincorporations, insertions and deletions introduced by DNA polymerase slippage are not properly recognized and corrected. Specific genomic regions, including microsatellites, are more prone for DNA polymerase slippage and, therefore, more susceptible for the introduction of these mutations if the DNA MMR capacity is lost. Some of these susceptible genomic regions are located within the coding regions of genes. Insertions and deletions in these regions may alter their reading frame, potentially resulting in the transcription and translation of frameshift peptides with c-terminally altered amino acid sequences. These frameshift peptides are called neoantigens and are highly immunogenic, which explains the enhanced immunogenicity of MSI CRC. Neoantigens contribute to increased infiltration of tumor tissue with activated neoantigen-specific cytotoxic T lymphocytes, a hallmark of MSI tumors. Currently, neoantigen-based vaccination is being studied in a clinical trial for Lynch syndrome and in a trial for sporadic MSI CRC of advanced stage. In this Focussed Research Review, we summarize current knowledge on molecular mechanisms and address immunological features of tumors with MSI. Finally, we describe their implications for immunotherapeutic approaches and provide an outlook on next-generation immunotherapy involving neoantigens and combinatorial therapies in the setting of MSI CRC.


Subject(s)
Antigens, Neoplasm/metabolism , Colorectal Neoplasms/therapy , Immunotherapy/methods , Microsatellite Instability , Microsatellite Repeats/genetics , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , DNA Repair , DNA-Directed DNA Polymerase/metabolism , Humans , Immunotherapy/trends , Lymphocyte Activation , Mutation/genetics , T-Lymphocytes, Cytotoxic/transplantation
3.
Bio Protoc ; 13(4): e4613, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36845533

ABSTRACT

Development of the hybridoma technology by Köhler and Milstein (1975) has revolutionized the immunological field by enabling routine use of monoclonal antibodies (mAbs) in research and development efforts, resulting in their successful application in the clinic today. While recombinant good manufacturing practices production technologies are required to produce clinical grade mAbs, academic laboratories and biotechnology companies still rely on the original hybridoma lines to stably and effortlessly produce high antibody yields at a modest price. In our own work, we were confronted with a major issue when using hybridoma-derived mAbs: there was no control over the antibody format that was produced, a flexibility that recombinant production does allow. We set out to remove this hurdle by genetically engineering antibodies directly in the immunoglobulin (Ig) locus of hybridoma cells. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and homology-directed repair (HDR) to modify antibody's format [mAb or antigen-binding fragment (Fab')] and isotype. This protocol describes a straightforward approach, with little hands-on time, leading to stable cell lines secreting high levels of engineered antibodies. Parental hybridoma cells are maintained in culture, transfected with a guide RNA (gRNA) targeting the site of interest in the Ig locus and an HDR template to knock in the desired insert and an antibiotic resistance gene. By applying antibiotic pressure, resistant clones are expanded and characterized at the genetic and protein level for their ability to produce modified mAbs instead of the parental protein. Finally, the modified antibody is characterized in functional assays. To demonstrate the versatility of our strategy, we illustrate this protocol with examples where we have (i) exchanged the constant heavy region of the antibody, creating chimeric mAb of a novel isotype, (ii) truncated the antibody to create an antigenic peptide-fused Fab' fragment to produce a dendritic cell-targeted vaccine, and (iii) modified both the constant heavy (CH)1 domain of the heavy chain (HC) and the constant kappa (Cκ) light chain (LC) to introduce site-selective modification tags for further derivatization of the purified protein. Only standard laboratory equipment is required, which facilitates its application across various labs. We hope that this protocol will further disseminate our technology and help other researchers. Graphical abstract.

4.
NPJ Vaccines ; 8(1): 186, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086855

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that block Plasmodium parasite development in the mosquito midgut, thus preventing mosquitoes from becoming infectious. While the Pro-domain and first of fourteen 6-Cysteine domains (Pro-D1) of the Plasmodium gamete surface protein Pfs230 are known targets of transmission-blocking antibodies, no studies to date have discovered other Pfs230 domains that are functional targets. Here, we show that a murine monoclonal antibody (mAb), 18F25.1, targets Pfs230 Domain 7. We generated a subclass-switched complement-fixing variant, mAb 18F25.2a, using a CRISPR/Cas9-based hybridoma engineering method. This subclass-switched mAb 18F25.2a induced lysis of female gametes in vitro. Importantly, mAb 18F25.2a potently reduced P. falciparum infection of Anopheles stephensi mosquitoes in a complement-dependent manner, as assessed by standard membrane feeding assays. Together, our data identify Pfs230 Domain 7 as target for transmission-blocking antibodies and provide a strong incentive to study domains outside Pfs230Pro-D1 as TBV candidates.

5.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Article in English | MEDLINE | ID: mdl-36382536

ABSTRACT

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Subject(s)
Antibodies, Bispecific , Humans , Antibodies, Bispecific/therapeutic use , Immunotherapy
6.
Front Immunol ; 10: 824, 2019.
Article in English | MEDLINE | ID: mdl-31040852

ABSTRACT

Tumor vaccines are an important asset in the field of cancer immunotherapy. Whether prophylactic or therapeutic, these vaccines aim to enhance the T cell-mediated anti-tumor immune response that is orchestrated by dendritic cells. Although promising preclinical and early-stage clinical results have been obtained, large-scale clinical implementation of cancer vaccination is stagnating due to poor clinical response. The challenges of clinical efficacy of tumor vaccines can be mainly attributed to tumor induced immunosuppression and poor immunogenicity of the chosen tumor antigens. Recently, intratumor heterogeneity and the relation with tumor-specific neoantigen clonality were put in the equation.In this perspective we provide an overview of recent studies showing how personalized tumor vaccines containing multiple neoantigens can broaden and enhance the anti-tumor immune response. Furthermore, we summarize advances in the understanding of the intratumor mutational landscape containing different tumor cell subclones and the temporal and spatial diversity of neoantigen presentation and burden, and the relation between these factors with respect to tumor immunogenicity. Together, the presented knowledge calls for the investment in the characterization of neoantigens in the context of intratumor heterogeneity to improve clinical efficacy of personalized tumor vaccines.


Subject(s)
Cancer Vaccines/immunology , Immunogenicity, Vaccine , Neoplasms/immunology , Animals , Antigens, Neoplasm/immunology , Dendritic Cells/immunology , Epitopes , Genetic Heterogeneity , Humans , Neoplasms/genetics
7.
Sci Adv ; 5(8): eaaw1822, 2019 08.
Article in English | MEDLINE | ID: mdl-31489367

ABSTRACT

Hybridoma technology is instrumental for the development of novel antibody therapeutics and diagnostics. Recent preclinical and clinical studies highlight the importance of antibody isotype for therapeutic efficacy. However, since the sequence encoding the constant domains is fixed, tuning antibody function in hybridomas has been restricted. Here, we demonstrate a versatile CRISPR/HDR platform to rapidly engineer the constant immunoglobulin domains to obtain recombinant hybridomas, which secrete antibodies in the preferred format, species, and isotype. Using this platform, we obtained recombinant hybridomas secreting Fab' fragments, isotype-switched chimeric antibodies, and Fc-silent mutants. These antibody products are stable, retain their antigen specificity, and display their intrinsic Fc-effector functions in vitro and in vivo. Furthermore, we can site-specifically attach cargo to these antibody products via chemoenzymatic modification. We believe that this versatile platform facilitates antibody engineering for the entire scientific community, empowering preclinical antibody research.


Subject(s)
Antibodies, Monoclonal/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Hybridomas/physiology , Animals , Antibody Specificity/genetics , Cell Line, Tumor , Genomics/methods , Immunoglobulin Fab Fragments/genetics , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL